Cecma Draft

Ecma/TC39/2013/0xx

Al ECMA-262
- - - 6™ Edition / Draft November 8, 2013

(
S

AScript Language
pcification

Report Errors and Issues at: https://bugs.ecmascript.org

Product: Draft for 6th Edition
Component: choose an appropriate one
Version: Rev 21, November 8, 2013 Draft

Rue du Rhoéne 114 CH-1204 Geneva T +41 22 849 6000 F: +41 22 849 6001

https://bugs.ecmascript.org/

oecnd

Contents Page
g (o [T 1o) o USSP Vi
1 Yoo] o1 TSR PPPPPPTN 1
2 LO70] o1 (0] 1.0 =T o= PP 1
3 NOIMALIVE FEFEIENCES ...t e e e e e eeeee e dnn e e e e e et eettta e e e e e eeeeennnaeeeaaeees 1
4 L0 YT T PR 1
4.1 WeD SCriptiNg .o 2
4.2 ECMASCHPT OVEIVIEW ..eeeiiiiiiiiiiiiieieeeeeeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeadhnnanseesesesunssasbeeseseeeeeeeseeseessesnesssnnnsnnnnes 3
0 A © T o] = ! S ST 3
4.2.2 The Strict Variant of ECMASCHPE .oovviiiiiiiiiii e edfenatbe s e e e e e e eeeeatin s e e e anssasbn s eeeeeeeeennnnnneeeeeenes 4
4.3 JLIN=1 8 3T Lo o 1= 101 0] g - S 5
4.4 Organization of This SPecCifiCation cooiiiiii e en e e e tbe e e e e e e eeeenenns 8
5 [N [o)e= 110 g F= U @0 0 Y= o | [0] o 1S 9
51 Syntactic and Lexical GrammarS ooooooiiiiii i e 9
5.1.1 CoONtEXt -Fre@ GraIMIMAISciocieieiiiiieeieiiieeeeieeeeeetaseeeabae s e sdoannasaesteeeeennaeeeennaeeeennaeeesnnaresnnneenennnaaaes 9
5.1.2 The Lexical and REGEXP GIaMIMAIS oouiiiiiiiiiiiiiietitteetatteseeeeeeeeeeeeeeeeeeteeeeetteseeaeeaaateteeeeeeeereeeeeeeeees 9
5.1.3 The NUMENIC StHNQ GraMMET uuuiiiiereeeeeiiniieeereeaunue s aseesabaeeernseeeeeeeannnaaeeeeenennnnaaeeererrnaaaees 9
5.1.4 The SYNtactiC GramIMalrccouuueioiieereee i e eeeeeeeeeeuuunsseeesassssbaenn e aeeeeeeesnsnnaaeeeeeeensnnnnaeeeerennnnnnaes 9
5.1.5 Grammar NOTAIONooiiiiiiiiiiiiiiiiiiiiieetie e siateee e i e eeeeeeeeeeeeeestansssbeeeeeeeeeeeeeeeeeeeeeeesssssesseeeseeeeeneeeeeees 10
5.2 W\ Ko o g1 aTa T @XoT 01 7=T 0 (o] 1 15
5.3 Static SEMAaNtiC RUIES ..o e i, 16
6 ECMASCript Data TYpeS-@an ValUEScciiiediiiiriiiiiie e eeeeiiis e s e e e e e e e etrs s e e e e e e e s e e e e e e eenennnnneeeeeees 17
6.1 ECMASCHPEL LANQUAGE TYPES uiiuniieiiiiiiitiaateeseeeeettiiiseeeeeeeeeattaasaeeesaeaesaaaeeeaaeesasnnnaeaeaeeeessnnaaaaes 17
200 I (= [o 1= T 1T I o= 17
00 7 I 1= N[0 1Y o = 17
L0 T I (= = To Yo =TT T Y/ o1 17
L0 I 1= RS T TN I3/ 1 R 17
L0 T I 1= 3 Y70 0] o o I I o P 18
L0 T I U= N[0T 01 T= T A I3/ L= T 19
00 A I 1= @ o] =T B 1577 1= S 20
6.2 ECMASCIipt SPECIfICAtION TYPES ..eeeiieiiiiiiiiiiiiiiieieieeeeeeeeeeee ettt et aeeeeeeeeeeessaesessssssesssssssssssneensnnnres 31
6.2.1 < The List and Record SpecCifiCation TYPE ...ooiiiiiiiiiiiiiiiiiiieieeiee ettt eeeeeeeaeeeeseeseeseessesennssnnnes 31
6.2.2 The Completion Record Specification TYPE ..occiiiiiiiiii i e e e e e e e e e a e s 31
6.2.3 ' The Reference SpecifiCation TYPE ...ccoiiiiiiiiiii e e e e e e e e e e e e e s 32
6.2.4 The Property Descriptor SPecification TYPE oociiiiiiiiii i e s 34
6.2.5 The Lexical Environment and Environment Record Specification Types iiiiiiiiiiervveinn, 36
L T B = = T 2 T - PRSPPI 37
7 ADSEIAaCt OPEIALIONS ... 37
7.1 Type Conversion and TESHNG ..ooceeii i 37
4% 0 R o = 1 1 411 1= PRSP 37
4% T o] =T To [T o PP PPN 39
4% R T o111 1] o1 PPN 39
% R o 1| 1 =T o [PO PPP PP 42
7.1.5 ToINt32: (SIGNEA 32 Bit INTEEI) ..eveiieiiiiiiiiiiieiiieieeeeeeeateeeaeeeeeeeeeeeeeeeaeeeeeeeeeesaasssssssssssssssssssssssssnnsssnnes 42
7.1.6 ToUint32: (UNnsigned 32 Bit INtEOET) .oeeiiiiiiiiiiiiiiiiiiiiiiii ettt ettt ettt et et e eeeaaaeeseeaeaeeseseeeseeeeeeeees 43
7.1.7 TOoINt16: (SIGNEA 16 Bit INTEEN) .oeeeiiiiiiiiiiiiiiieieiieeeeeteeteeteeeeeeeeeeaeeeeeeeeeaeeeeeessassssssassssssssssssssssssnsensnnes 43
7.1.8 ToUintl6: (Unsigned 16 Bit INTEYET) ..eeeiiiiiiiiiiiiiiiiiiiiiiie ettt e e e e eeeaaaeaseeaeseeeeeeeeeeeeeeeeees 43
7.1.9 ToINt8: (SIgNEd 8 BIt INTEGET) ..eeieiieiiiiiiiiiiiiiieeeeeeeeeetteeeeeeeeeeeeeeeeeeeeeeeeeeeeessssssassesssssssssssssssssssssssnsnnnnes 43
7.1.10 ToUint8: (UNSIgNEd 8 Bit INTEYEN) ..eiiiiiiiiiiiiiiiiiiiiieeeeeeeeteeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeseessssssssssssssssssssssnssnnnnes 44
7.1.11 ToUint8Clamp: (Unsigned 8 Bit Integer, Clamped) oeiiiiiiiiiiiiiiiiiiieeiiieviieeeeeeeeeeeeeeeeeeeeeeeeeeennene 44

© Ecma International 2013 i

7.1.12
7.1.13
7.1.14
7.1.15
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.3.8
7.3.9
7.3.10
7.3.11
7.3.12
7.3.13
7.3.14
7.3.15
7.3.16
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8

8

8.1
8.1.1
8.1.2
8.2
8.3
8.3.1
8.3.2
8.3.3
8.3.4

9

9.1
9.1.1
9.1.2
9.1.3
9.14
9.1.5

eCnd

B0 1S] 1] o PP PP P PP PP PPPPPPPPPPPPPPPPPR 44
01O] o] (=T PP P PP PP PP PPPPPPPPPPPPPPPPPR 45
TOPTO PEITYKBY ittt ettt e e ettt e e e et e e e 46
B 0] =1 T | { o PP P PP PP PPPPPPPPPPPPPPPPPR 46
Testing and CompariSON OPETAtIONS eiiiiiiiiiiiiiiiiiiii ittt e et e et e et eeee e aeeeeeeeeeeeeeeeeeeeeees 46
CheckODbjectCoercible ... 46
1Y@ 11 F=][PSPPI a7
SAMEVAIUE(X, V) 1 oieiiiiiiii i 47
SAMEVAIUBZETO(X, ¥) +eeeieiiiiiiiiiiii ittt 48
1O 0] 013 {(F od (0] PPN 48
(YR (0] 01T 41V (=TSP T T PTUUTPPPTRPPRRPPPI 48
1] =T a1 o] L= (©) TN 48
Abstract Relational COMPAIISON uuiiiiiiiiiiiiiiieitiieeeb e b s 49
Abstract Equality COMPATISON uuuiiiiiiiiiiiiiiiiiieeiibii b 50
Strict Equality CompariSON ... 50
Operations 0N ODJECES ..o 50
GEL (O, P) e 50
0L (O TR Y I o1 o 1L) T 51
CreateDataProperty (O, P, V) o 51
CreateDataPropertyOrThrow (O, P, V) oo b 51
DefinePropertyOrThrow (O, P, AESC) uuuuiuirieiebuntunienniiitiiiiiiiiitsfieeeeeneennnneennensennnnss s beeeeeeeeeeneees 51
DeletePropertyOrThrow (O, P) eiuieiiiiiiiiiiiiie bbb s e s 52
[F= Y e o] o T=T 4 A (@ T) T NS 52
HaSOWNPIOPEILY (O, P) ..uuuiiiiiiiiiiiiiiiiiiiiiiiiitiiieiiieiee s B b s s 52
LT\ 1= 1 o T N (TR = 52
SetintegrityLevel (O, I8VEI) ..o i e et 53
TestintegrityLevel (O, IEVEI) ... e i e et e e e e e e e e e e e e e e e r e e e e e e e e annneeas 53
Create ArrayFromLISt (ElEMENTS) ... iii i i e e e e e e e e e S e e e ettt e e e e e e e e e r e e e e e e e eennnn s 54
CreateListFromAIrayLiKe (0D]) ... e it ae e e e e e e e e 54
(@] (o 1 F= 13 = Y 1) =T Lo I (@) 54
GetPrototypeFromConstructor (constructor, intrinsicDefaultProto) ... 55
OrdinaryCreateFromConstructor (. constructor, intrinsicDefaultProto, internalDataList) — 55
Operations on lterator ODJECES ..ot ..o i e e e e e e e e 55
LT (=T = (o] (o] o) 55
[teratorNext (Iterator, VAIUE) i it e e e e e e e e e e e e e e e e et e e e e e e eeeananaaeeeeeees 56
IteratorComplete (ITEIrRESUIL) oo i it e et e e e e e e e e e e e e e e et e e e e e e eeeasanaaaeeeeees 56
[teratorValue (ITEIRESUIL) oo e e e e e e e e e e e e e e et e e e e e e e e eaaaaeaaeaeeees 56
[teratorStep. (Iiterator, VAIUE)coooiiiiiii i e e e e e e e e e e e e e e e e e e e aaaae 56
CreatelterResultObject (ValUE, ONE) ceviiiii i e e e e e e e s 56
CreateListiterator (ISE) ..ot 56
CreateEMPLYIEErAtOr (1)..ooee it 57
Executable Code and EXeCution CONEXIS ..ooooiiiiiiiii e 57
LEXICal ENVITONMENES | oottt 57
ENVIFONMENT RECOIMUS | 1utuiuiiiiiiiiiiiiiiiiiiiiiieiei e e 58
Lexical ENVIronmMent OPEIAtIONS uuuiuiiiiiiiiiiiiiiiiiieiinnennne s 69
CodE REAIMSotiiiii 71
o110 I 0] 1= =S 71
RESOIVEBINAING(NAIME) uiiiiiiiiiiiiiiiiiiiitteittt e e 72
GEtThISENVIFONMENT oottt eeeeees 72
LT o AV I T =1 e T [TV S 73
GEtGIODAIODIECL ...cooiiiiiiiiie e 73
Ordinary and Exotic Objects BENAVIOUIS iiiiiiiiiiiiieeeeeeeeeeeee e 73
Ordinary Object Internal Methods and Internal SIOtS ..., 73
(L= i (o1 (0]0Y o110 | | I (O SRR 73
[[SEtPIOtOtYPEOT] (V) coiii i 73
[ISEXIENSIBIET] () vooeeee e 74
[[PreventEXIENSIONS]] () cooiiiii i 74
[[GEtOWNPIOPEIYT] (P) o ooii i i 74

© Ecma International 2013

~ecihd

9.1.6
9.1.7
9.1.8
9.1.9
9.1.10
9.1.11
9.1.12
9.1.13
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6
9.2.7
9.2.8
9.2.9
9.2.10
9.2.11
9.2.12
9.2.13
9.3
9.3.1
9.3.2
9.4
94.1
9.4.2
9.4.3
9.4.4
9.4.5
9.5
951
9.5.2
9.5.3
9.5.4
9.5.5
9.5.6
9.5.7
9.5.8
9.5.9
9.5.10
9.5.11
9.5.12
9.5.13
9.5.14
9.5.15

10
10.1
10.1.1
10.1.2
10.2
10.2.1
10.2.2

11

111
11.2
11.3

[[DefineOWNPTIOPEITY]] (P, DESC) ..uieiiiiiiiiiiiiiiiiiiitit bttt s 74
[[HASPTOPEITYTI(P) +ertttrttutttntttttttttttttttebbeee s 76
[[Get]] (P, RECEIVEL) ..ttt s 76
[[SEt]] (P, V, RECEIVET) ..ttt s 77
[[DEIELETT (P) +evvtvttrrnunnnntruuttttttttttttei s 77
[[ENUIMETALE]] () +rvvvvrrrrnrnnnnnnnnnnnnntttttttietetietieebbbebe bbbt e 77
[[OWNPTIOPEITYKEYS]] (1) weueerunnununuunnttttittttbttetb s 78
ObjectCreate(proto, internalDataList) Abstract Operation coooiiiiiiiiiii e 78
ECMASCHPEt FUNCHON ODJECLS ..oiiiiiiiiiiiiiiiiee ittt ettt e s s s eeeseeeeeeetennees 79
[[Call]] (thisSArgument, arguMENTSLISL) uuiiiiiiiiiiiiiiitiiti bbbt 79
[[Construct]] (ArgUMENTSLISE) ...uieiiiiiiiiiiiiietie et s 80
[[GEtOWNPIOPEIYT] (P) -eeeeeerunnnnuniinniiiiitiitiitti i s s 81
FunctionAllocate AbStract OPEration oeiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeadoeeeareeeeeeeeeaseeeeeeeeeeeeeeeeeeeeeeeees 81
Functioninitialise ADSIract OPeration ooeiiiiiiiiiiiiiiiiiiiiiiiiiiieeesdieeter et et eeee e eee e eeeeeeeees 81
FunctionCreate ADSIraCt OPEration oeviiiiiiiiiiiiiiiieeieiieeeeeeesdbereereeee bt eeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeees 82
GeneratorFunctionCreate Abstract Operation ooooviiiiii i i e 82
AddRestrictedFunctionProperties Abstract Operation cccoiviiiiiiiiiiiie i 82
MakeConstructor ADSIract OPEerati ON......ccoeceiiieeiiiiis e deee e e e e e eeeiaie e e e e saeea s b e e e e e eeenennnnneeeeees 83
SetFunctionName AbStract OPEration coooiiiiiiii i e 83
GetSuperBinding(obj) Abstract OPeration ccoiedtiiiireiee e e e e e e s e e e saeeeabae e e e eeeeeeeennen 83
RebindSuper(function, newHome) Abstract Operation =ccooovieieeeiiiiiniie e ere e e st 84
Function Declaration INStantiation ooov i fieiies et 84
BUilt -in FUNCHION ODJECES ..oiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeee s be et o ettt ettt e e eeeeebbeeeeeeeenene 86
[[Call]] (thisArgument, arguMENSLIST) ...oooeeiiieiii e e e e e e e e e e e e e e e e e eenenn e eeeeees 86
CreateBuiltinFunction ADStract OPeration coiooiiiiiiiiies e e e e e e e e e e eeeeaanes 87
Built -in Exotic Object Internal Methods and Data FieldS ..o 87
(21010 o I =0 [Tt o] o I o | 1 Tol @ o [=Tox £ T 87
F N4 = | o) [@ o] = o £ 88
S T o (o o @ o 1= £ SN 90
Arguments EXOLIC ODJECIS ooiiiiiiiiiii ek cfe et s e e e e e R e e e e e et e e e e e e e ee e e e e e e enenn e as 91
Integer Indexed EXOtIC OBJECLS.ccooviuiiiis e ideeiire it e e e e e et e e e e e e e e e e e e e e e e enaaan e ees 95
Proxy Object Internal Methods and Internal SIOtSccooviiiiiiii i 97
| LT R4 1010014, o T=T@ 1 | I T S 98
| ISTET R o110 107 o T=T0 | Y I RS 98
| ST 1S o1 1= |) S 99
[[PreVeNtEXIENSIONST] () ¢ettuuieiteeeeee e i i e e e et e stmte e e e e e e eeeettaaa e e e eeeeeesaa e eeeeeeeessnnnn s eeeeeeeesnnnnnaaaaaaenes 99
[[GEtOWNPIOPEMY]] (P) «etteeuuei i e ittt e e ettt e e e e e ettt e e e e e e aeaaa e e e e eeeeaessann e eeeeeesssnanaeeaaaeees 100
[[DefineOWNPIOPErty]] (P, DESC) .oveeiiiiiii i e ettt e e e e e et s s e e e e e e et e e e e e e eeeannnaneaeeaaees 100
=t =) 0 1= YA (0 PPN 101
[[GEL]] (P, RECEBIVEL).uveiiuututbueeeeeenetnnetattnneinneieanasaaeesesaesssssse e s e s 102
[[SEL]] (P, V, RECEIVEL)uiiiuiuibie ittt e s 102
=212 | I T 103
=T8T =T == | I 103
[[OWNPTIOPEITYKEYS]] (1) -everrernnnnnnnnnnnnnunttuttiaatnieaennaeeesaennssaeesssee s 104
[[Call]] (thisArgument, @rgumMENTSLISL) uuueiiiiiiiiiiiiii s 104
[[Construct]] INterNaliMEtNOT eiiiiiiiii s 105
ProxyCreate(target, handler) Abstract OPeration ovviiviiiiiiiiiiiiiieiiiiieeiieeeeeeeeeeeeeeeeeeeeeeerrnee 105
ECMASCript Language: SOUICE COUE oviiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesssasseeseeeeeeeeeeeeeeees 105
Yo U] (ol I TP TP PPP PP PPUPPPINt 105
Static Semantics: UTF-16 ENCOAINGccooveiiiiiiiiiii e 106
Static Semantics: UTF16Decode(lead, trail) —ooooeiiiiiiiii 106
TYPES Of SOUICE COUE .o 106
SHICE MOAE COUE .o 107
NON-ECMASCHIPE FUNCLONS ..oiiiiiiiiiiiiiiiiiiiieiieeieeeeeeeeeeee e eeeeeeeaeeeststsssssssasssssssssseesnsaseessnnnnnnes 107
ECMASCcript Language: LexiCal GIramMEar eeeieeieeeeeeeeeeeeuuueereeerseeseeesseeeeereeereeerrr——.. 107
Unicode Format -Control ChAraClerSeuuiiiruimmiiiiiiiiiiiiiiiiiierieaeerereeeraerae e 108
WHItE SPACE ..o 109
[T a1 =Y 00T g = 1o £ OSSPSR 109

© Ecma International 2013 iii

secma

N O] 1 011 1=] £ PP PPN 110
5 R T 1o 1= o PSSP 111
11.6 NAMES AN K BYWOITSoeiiiiiiiiiiiiiiiiieiiet ittt ettt ettt et e ettt et e e et e e ee e e e e e e eeeeeeeeeessssssssnnnnnnnne 111
11.6.1 Identifiers and Identifier NAMES iii oo e e e et e e e e e e e eeneaas 112
11.6.2 RESEIVEA WOIUS ...iiiiiiiiiiiiieei ittt e ettt e e e e e et e e e et e e e e e e e eettaa e e e e e eeeeeabaa e aeeeeeesssnnaeeeeeeeennnnnnnnns 113
11.7 U o (0 F= (0 = TP 114
0 T I 1T > £ 114
0 20 O V11 1Y = 1SR 114
R = o To o= o I I (T = £ P 114
B TR O V1010 T Tl I = = PP 114
11.8.4 SHING LITETAIS ..oeiiiiiiiiiiiiiiiiiiiii ittt ettt ettt ettt sttt e et e e et e e et e e et e eeeeeeeeeeeeees 117
11.8.5 Regular EXpression LItEIalS ooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeieieeeeeeeeeeeeeeeeesdhansabeseeeeeeeeeeeeeeeeeeeeeennnnee 120
11.8.6 Template Literal Lexical COMPONENTS ooiiiiiiiiiiiiiiiiiiiiiiieieiiieeieieeeeeadhertarteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 121
11.9 Automatic SEMICOION INSEIION ...t s fo e e e e ettt s e e e e e e e e eeaa e e e e e e eeeenenns 123
11.9.1 Rules of Automatic SEmMICOION INSEITION oiii i e s e e e e e e e e eeeeea s 123
11.9.2 Examples of Automatic SEmicolon INSErtION ...ooiiiiiiiiiii et e e e e e e e eeeeeenas 125
12 ECMASCript Language: EXPreSSIONS uuvuuvevuuruunrnrnnrnrnesdbhiueeeeennnnnnnnneneneennsassssbhenennnnenennnnennennnnene 126
12,1 Primary EXPrESSIONS ...cociiiiiiiiiiiiiiiiiiiiiiiiitiieieieeeeeeeeeeeeesdhesttseesaeeeeeeeeeeeeeeeeeeeeeesranese bt eeeeeseeeeeeeeeeeeees 126
2 0 =T =T oo 126
12.1.1 The thiS KEYWOIT ...cooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeee e afiett st ettt ettt eeeeeeeeeeeeeeeeeeeeeeessannaabae e eeeeeeeeees 128
12.1.2 ldentifier REFEIENCEuiiii i ettt e e e B e e e e e e et e s e e e e e e eenan s 128
2 0 T I 1T - £ N 129
12.1.4 Array INIAISEE .oeoiiiiiiiiiiiiiiii ettt i afe ettt ettt ettt ettt ettt et e e e e e e 129
12.1.5 ODBJECT INITALISEI .eeeiiiiiiiiiiiiiiiii ettt ettt ettt ettt ettt ettt ettt ettt e e et e e ettt e e e ee et e eeeeeeeees 135
12.1.6 Function Defining EXPreSSIONSiiiieee i i e eeee et as e e e tie et s s e e e e e e eeaaaseeeeeeeeannnnnreeeeeeeennnnnn 139
12.1.7 Generator COMPrENENSIONS .oiiuuie it eee e i e e e e e eeeeiaie e s eesaseeeshe st eeeeeeeeannsaeeeeeeeannnnnnaaeeeeennnnnnn 139
12.1.8 Regular EXPression LItEIalS uu.iiiieeieeee s iine e euesseeeeeesannssshn s eeeseeesnnnnsaeeeeseesssnnnnaaeeeeeennnnnnn 140
2 T = 4 o] o L= =Y -1 140
2 O B I g L=] o 1U] o o T] 1= = (o S 144
12,2 Left-Hand-Side EXPrESSIONS.uuuuiiiieeiiieeubeeneiianeareeeuuusseeaaasessesnnsaeeeenennnnaeeeeerennnnnaaeeeeennnnnn. 145
12.2.1 StAtiC SEMANTICS ..ieefieiiititteeeiueiiieeieeeeeeeteeee et tr ettt ettt ettt ettt ettt ettt ettt et et eeeeeetee e et eeeeeeeeeeeeeeeeeeeeeeeeeees 145
A e (0] o= Y Yo o2 0 = 148
D B I L= 1= A @ 0= - o] P 149
12.2.4 FUNCHON CalIS < tiiiiiiiiiiiiiiiiiiiiee ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt e e e st ee et eeeeeeeeeeeeeeeeeeeeeees 149
12.2.5 The SUPEr KEYWOIAcclieeeeiiii i iiiiinnes e eesaeeeseattn s seeeeeeeataaaaeeeeeeeeestaanaaeeeeeessnnnaeeeeeernsnnnnnnnns 150
N T AN o [1= 1S £ 151
D A - To T T=To [=T 0] 0] o (TSP 152
D B =0 1) 1 = o] (=71 o S 153
12.3.1 Static Semantics: Early EFTOIS. ccooiiiiiiiii i e e e e e e e e e e e e eaaaaas 153
12.3.2 <Static Semantics: IsAnonymousFunctionDefinition ..., 153
12.3.3 Static Semantics: IsValidSimpleAssignmentTarget ... e 153
12.3.4 Postfix INCremMENt OPEIALON vvviiii e eiiieiiiie e e et e e e e e e e e e e e et e e e e e e e e et et e aeeeeeeessnaa e eeeeeenennnnn 153
12.3.5 POStfiX DECTEMENT OPEIALOT ..iieviiiiiiiieeiii e e e e et e e e e e e e e e e et s e e e e eee it e eaeeeeeeaanaa e eeeeeenennnns 154
12,4 UNAFY OPEIALOIS ...oiibuutunn i eeetieetttte e eteeeatt e e e e teeeebbaa e e e ettt ttba e e eeaeeeetbbaataeeeeeessnan e eeeeeeennnnnnnnns 154
12.4.1 Static SEmMantiCS: Early EITOIS ..ottt aaae e ae st esessseseeseeeeessnnnees 154
12.4.2 Static Semantics: < ISAnonymousFuUnctionDefiNItioN ooiiiiiiiiiiiiiiiiiiieciieeeeeeeeeeeeeeeees 154
12.4.3 Static Semantics: 1sValidSIimpleASSIgNMENtTArgel oevvviiiiiiiiiiiiiiiiieeiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee 155
12.4.4 THE dEIEIE OPEBIALONeeiiiiiiiiiiiiiiiiiiietttet ettt eeeee et ettt ee e eeeeeeeeeseeeeseeseseeeseeseeeseeeseseeeesesssssssnssnnnnnes 155
12.4.5 THhe VOIA OPEIAIOF ...cooviiiiiiiiiiiiiiiiiiiii ittt ettt ettt ettt ettt et e e et et eeeeeeeeeeeeeseseeeeeeeeeeeeeeeeeees 156
12.4.6 The tyPEOTf OPEIALOT ...oeiiiiiiiiiiiiiiiiiiiii ittt ettt et e aeae e e et se e et e e ee e e e e e eeeseeeeeesessssnssnnsnnnnnes 156
12.4.7 PrefiX INCreMENt OPEIAtOF oiiiiiiiiiiiiiiiiieieeteeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeetassssssesseeseeeseeesseeeeesseessnssnnnnes 157
12.4.8 Prefix DECremMENt OPEIAIOT uiiiiiiiiiiieiiiiieiiieeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeasssseseseseseeeseeseseeeseeeeessssnnnsnes 157
12.4.9 UNAIY 4 OPEIALOL .. eetuiiiiit ettt ettt e ettt e et et e e et et e e eea e e eeeaa e e e ee st e e aeeba e e e esaeeeesnanaeaennnnaaanes 157
12.4. 10 UNAIY = OPEIALOL .. .eutuieieit i eeteit ettt e et e et et e et et e et e et t e e eeaa e e eeaaa s e e eetaa e e e eebaaeeena e eeesnnnaeeennnnaaanes 157
12.4.11 BitWiSE NOT OPEIALOT ([™) eeeeettrttireeeeetetetetteteeeeeaeeeeeeeeeeeseeeeeeeseeeeeeeeeeesessssssessssseasseeeereeeereeeesrrrrnnnnes 158
12.5 MUIIPIICALIVE OPEIAIOIS ..eiiiiiiiiiiiiiiiiieiitteteteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeassssesesasseseseseaesesseseseesssssssnnnnnnnes 158
12.5.1 Static Semantics: ISANoNyMOoUsFUNCtiONDEfINIION oiiiiiiiiiiiiiiiiiiieieeeeee e 158
12.5.2 Static Semantics: I1sValidSIimpleASSIgNMENTTArgel evvviiiiiiiiiiiiiiiiiieeeeiiiieeeeeereeeeeeeeeeeeeeeeeaeee 158

iv © Ecma International 2013

~ecihd

12.5.3
12.6
12.6.1
12.6.2
12.6.3
12.6.4
12.6.5
12.7
12.7.1
12.7.2
12.7.3
12.7.4
12.7.5
12.8
12.8.1
12.8.2
12.8.3
12.8.4
12.9
12.9.1
12.9.2
12.9.3
12.10

12.10.1 Static Semantics:
12.10.2 Static Semantics:
12.10.3 Runtime Semantics:

12.11

12.11.1 Static Semantics:
12.11.2 Static Semantics:
12.11.3 Runtime Semantics:

12.12

12.12.1 Static Semantics:
12.12.2 Static Semantics;
12.12.3 Runtime Semantics:

12.13

12.13.1 Static Semantics: Early Errors
12.13.2 Static Semantics:
12.13.3 Static-Semantics:
12.13.4 Runtime Semantics:
12.13.5 Destructuring Assignment

12.14

12.14.1 Static Semantics:
12.14.2 Static Semantics:
12.14.3 Runtime Semantics:

13
13.0
13.0.1
13.0.2
13.0.3
131
13.1.1
13.1.2
13.1.3
13.1.4
13.1.5
13.1.6
13.1.7
13.1.8

Runtime Semantics:
Additive Operators
Static Semantics:
Static Semantics:

IsAnonymousFunctionDefinition
IsValidSimpleAssignmentTarget

The Addition operator (=+)....cooovviiiiieeeeeeiiiiiiiieeee.
S)

The Subtraction Operator (
Applying the Additive Operators to Numbers
Bitwise Shift Operators
Static Semantics: IsAnonymousFunctionDefinition
Semantics: IsValidSimpleAssignmentTarget

The Left Shift Operator (<<)cccovvveeeeeiiiiiiiiieeeenn.

The Signed Right Shift Operator (
The Unsigned Right Shift Operator (
Relational Operators
Static Semantics: IsAnonymousFunctionDefinition
Static Semantics: IsValidSimpleAssignmentTarget
Runtime Semantics: Evaluation
Runtime Semantics: InstanceofOperator(O, C)
Equality Operators
Static Semantics:
Static Semantics: IsValidSimpleAssignmentTarget
Runtime Semantics: Evaluation
Binary Bitwise Operators
IsAnonymousFunctionDefinition
IsValidSimpleAssignmentTarget
Evaluation
Binary Logical Operators
IsAnonymousFunctionDefinition
IsValidSimpleAssignmentTarget
Evaluation
Conditional Operator (< ?:)
IsAnonymousFunctionDefinition
IsValidSimpleAssignmentTarget
Evaluation
Assignment Operators

IsAnonymousFunctionDefinition
IsValidSimpleAssignmentTarget
Evaluation

Comma Operator (* ,)
IsAnonymousFunctionDefinition
IsValidSimpleAssignmentTarget

Evaluation

ECMAScript Language: Statements and Declarations

Statement Semantics
Static Semantics: VarDeclaredNames
Runtime Semantics: LabelledEvaluation
Runtime Semantics: Evaluation
Block
Static Semantics:
Static Semantics: LexicalDeclarations
Static Semantics: LexicallyDeclaredNames
Static Semantics: TopLevel
Static Semantics: TopLevel
Static Semantics: TopLevel
Static Semantics: TopLevel
Static Semantics: VarDeclaredNames

Early Errors

© Ecma International 2013

IsAnonymousFunctionD efinition

LexicallyDeclaredNames
LexicallyScopedDeclarations
VarDeclaredNames
VarScopedDeclarations

secma

13.1.9 Static Semantics: VarScopedDecClaratioNS eeviiiiiiiiiiiiiiiiiiiiiiieieieeeie e 183
13.1.10 Runtime SemantiCS: EVAIUALIONcccuuiiiiiiii ettt e e e e e e et e e e e eans 183
13.1.11 Runtime Semantics: Block Declaration Instantiation coooiiiii i 184
13.2 Declarations and the Variable Statement ... 184
13.2.1 Let and Const DECIAIAtIONS ciiniiiiiii ettt e e e et e e e e e et e e e b e e e b e s eeaans 184
T Y £ 1T o] LIS £= L (=) 1 1= | S 187
13.2.3 Destructuring BiNdiNg PatterNS oiiiiiiiiiiiiiiiiiiiieei ittt e aeee s e seaaeeeeeeaeeeeeeeennnnne 189
13.3 EMPLY STAIEMENT ..ottt e e e e ettt e r e e e e et e e e et e e n s 196
13.3.1 Runtime SemantiCS: EVaAlUALIONcoouuiiiiiii e e e e e et e e e e eans 196
13,4 EXPreSSiON STAIEIMENToiiiiiiiiiiiiiiiiiiiiii ittt ettt ettt et ettt ettt ee et e e eeee et et eeeeeeeeeetssesnenesnnnnnne 196
13.4.1 Runtime SemantiCS: EVAlIUALIONcoouniiiiiii et e e e e e et e e e e eeans 196
G TR T I o LI | Y 7= (=] 1.4 11 L S 196
13.5.1 Static Semantics: VarDecClar@dNAMEScouuiiiiiiiiiiiii e et e e e e e eans 196
13.5.2 Runtime SemantiCS: EVaAlUALIONccouuiiiiiiii e e et e e e e e e e e e e eans 197
13.6 LT Lo TR £ (=] 4[] 1 £ 197
G T ST O Y= ¢ =T o)1= 198
13.6.1 The dO-WhIle STAtEMENTcovniiiiii et s e e et e e e e e s aea et ie e e eaneeran e saeesnneeenns 198
13.6.2 The While STAtEMENTcouiiiiiii e e e et e e e e e e e as et ie e e eeaaeeenneeenns 198
13.6.3 The fOr STABMENTcienii e e et e e et e e e e e e e e ean e saae s e tae e e saneeeaneeeans 199
13.6.4 The for -in and for -0f STAEMENTSoiivniiii et e r e e e e e i eeeaneeeens 200
13.7 The contiNUE STAtEMENTcovuiiiiii et e e e e e f e i e et e e e e e et e e et e e st e e e e snneeenns 204
13.7.1 Static Semantics: Early EITOIS ...ttt dhettitt e eeeeeeeeeeaeaeeeeaeseeeeeeeeeseeeeeeeeeeenees 204
13.7.2 Runtime SemantiCS: EVaAlUALIONooouuiiiiiiiiii e e e e ettt e e e e e e e e e e e et e e e e eeans 204
13.8 The Break STAtEIMENTccouiiii et e et e e aa e e e e e aa e e et e e eaa e e et e e et e e ean e ean e saneeennseenneeenns 205
13.8.1 Static Semantics: Early EITOrS ier i ser e e e s e e e e e et s e e e e e e e eeaan e e e e e eeeenenan 205
13.8.2 Runtime SemantiCS: EValUation .. it ee e e et e e e e e e e et e e sesteeeseaaneeeeeen 205
13.9 The return StatEMENToue i i e e it et e eeet e eeestiasesathn e e e estaeeeesstnaeesettnseessnnaeesrannaeeeren 205
13.9.1 Runtime SemantiCS: EValUAtiONiiciiiiiiii e i et ee st e et e e e e e e e et e e sesaeeeseaaneeeeees 205
13.10 The With StatemMENTcooiiiiiiiie et et chata e aaa s ee s Eb e e e et e e e eetteeeestaaesestaeesrsaneesssnnnaeeees 206
13.10.1 Static Semantics: Early EITOIS oiiiiiiii i et e e e reaee et e e e e e e e e s e e e e e e e e eaaa e e e e e e aeeennnnn 206
13.10.2 Static Semantics: VarDecClaredNAMES ...l e e e aens 206
13.10.3 Runtime SemanticS:’ EValUAtiONoiiiiiiiiii ettt e e e e e e e et e e e eaa e eeeen 206
13,11 The SWItCh Stat@MENTouuiii it ettt e e et e e et e e e e st e e e e et eeesebteeessaeeesraaeeeesen 206
13.11.1 Static Semantics: Early EITOrS /... e e e e e e e e e e e e e e e e e aaaeaas 207
13.11.2 Static SemantiCs: LeXiCalDECIAIAtIONSccieiiiiiieiiiieee et e e e e e eaaeeeeens 207
13.11.3 Static Semantics: LexicallyDeclaredNamMES ii...........ciiiiii i 207
13.11.4 Static Semantics: VarDeClaredNAMEScuiiiiiiiiiii et e e e e e eaae e aens 208
13.11.5Runtime Semantics: CaseBIock EValUationcccoooiiiiiiiiiiiiiiiii e 209
13.11.6 Runtime Semantics: CaseSelector EValuationcooiiiiiiiiiiiiiiiiieiie e 210
13.11.7 Runtime SemantiCS: » EVAIUALIONuuiiiiiiiiii et e e e e e e e e e s eaa e eeeen 210
13.12 Labelled StAtEBMENTIS Li..iiiiiiiiies ettt e et e e et e e e et e e e ee e e e eata e e e eab e e eraaeeeaaaaaaas 211
13.12.1 Static Semantics: Early EITOIS ...ttt eeeeaaeeeeeesssssssesessseseseesnnneees 211
13.12.2 Static Semantics: VarDecClar@dNAMEScuuiiiiiiiiiiiiie et e e e e e e eens 211
13.12.3Runtime Semantics: LabelledEvaluationccooooiiiiiiiiiiiiii e 211
13.12.4Runtime SemantiCS: EValUAtiONccoooiiiiiiiiii et e e e e e e et e e eeen 212
13.13 The thrOW STAtEMEBNTiiiiiiiiii ettt e et e e e et e e e e et e e e e eba e e e sbaeeesraaneeeeres 212
13.13.1Runtime SemantiCS: EValUALIONcccoiiiiiiiiiiiii et e e e e e e e e e eaa e eeeen 212
13,14 The try SETAIBIMENT ...oooiiiiiiiiiiiiiiiei ettt ettt ettt ettt e et e et eeeeeaeeeseseeeeeeeeeeeeeees 212
13.14.1 Static SEmMANtiCS: EarlY EITOIS .oooiiiiiiiiiiiiiiiiiiiiiie ettt eeeeesseaseeesessssssessssssssnssnnnees 213
13.14.2 Static Semantics: VarDecClar@dNAMEScuiiiiiiiiiiiiii et e e e e e eaaeeeeens 213
13.14.3Runtime Semantics: BindingInitialiSation oiiiiiiiiiiiiiiiiiiiii e 213
13.14.4 Runtime Semantics: CatchClauSeEValuation oiiiiiiiiice e 214
13.14.5 Runtime SemanticS: EVaAlUALIONcoiiiiiiiiiiiiiii e e e e e e e et e eeeen 214
13.15 The debugger SAEIMENTooiiiiiiiiiiiiiiiiiiiii ettt eeeae s e e eseeeesseeeeaeseeseeeeeseesssssssnnnnees 214
13.15.1 Runtime SemanticS: EVaAlUALIONcoiiiiiiiiiiiiic et e e e e e e e s eaa e eeeen 215
14 ECMAScript Language: FUNCHONS and CIASSES uuuiuuiiiiiiiiiiiiiiiiiiiii e 215
14,1 FUNCLON DEFINITIONS oouiiiiiiiiiiiiie ittt e et e e et e e et et e e e e et e e e e et e e e eaba e e ssbaeesesanaeeees 215
14.1.1 Static SEMANtiCS: Early EITOIS ..ottt ettt e eeeeeeasesesessssesessssssessssssnsnnnees 216

Vi © Ecma International 2013

~ecihd

14.1.2 Static Semantics: BOUNANEGIMESooiiiiiiiiiiiii et e e et e e e e e e e eeaaaaa e e e eeeeeeennes 216
14.1.3 Static SEMANLCS: CONTAINS ...ciiiiiiiiiiie ettt e e e e ettt e e e e e eeetaa e e eeeaeeesannnaeeeeeeennnnns 217
14.1.4 Static Semantics: ExXpectedArgumentCOUNT oooiiiiiiiiiiii i 217
14.1.5 Static Semantics: HaSINILIANISEIcooeiiiiiii e e e e e eaeeens 218
14.1.6 Static Semantics: IsAnonymousFunctionDefinition ... 218
14.1.7 Static Semantics: 1SCONStANtDECIAratioNcooiiiiiiiiiii e 218
14.1.8 Static Semantics: IsSimpleParameterLiSt ... 218
14.1.9 Static SEMANTCS: ISSIICT ...ciiiiiieiiiii ettt e e e e e e e ate e e e e e e eeeeeanan e eeeeeeenennnn 219
14.1.10 Static Semantics: LexicallyDeclaredNamescoooiiiiiiiiiiiiii 219
14.1.11 Static Semantics: VarDeclaredNAMESiiiiiiiiiieiiie et e et e e e e e e eeaennan 219
14.1.12 Runtime Semantics: Evaluate BoOdY ... 219
14.1.13Runtime Semantics: Iterator Bindinglnitialisation ...l 220
14.1.14 Runtime Semantics: InstantiateFunctionODbject ... 220
14.1.15 Runtime Semantics: EValUationcooiiiiiiiiiiiiiie e s e e et e e e e eeeeens 221
14.2 Arrow FUNCtion DefiNitiONS ..oooiiiiiiiiiiii e e e b e s s e e e e b e e e e e e e eeeaann e e e e e eeennnnns 221
14.2.1 Static Semantics: Early ErTOrs ..o 222
14.2.2 Static Semantics: BOUNANGIMEScooeiiiiiiiiiiiii et eee st e e e e e e e eessan s i e e e eeeeeannnaeeeeeeeenennes 222
14.2.3 Static SEmMaNtiCS: CONLAINSovevviiiiiiii i eeee e afoeee b eeetaea e s e e eeeeesen s aaaeabaeeeeennnneeeeeseennnnnn 222
14.2.4 Static Semantics: CoveredFOrmMalSLIStcoiiiieiiiecdiiiias e e e e es e e e s b e e e e eeeeeaennes 223
14.2.5 Static Semantics: ExpectedArgumentCoUNTliiiiriiiiiiiiii e 223
14.2.6 Static Semantics: IsSimpleParameterList ... 223
14.2.7 Static Semantics: LexicallyDeclaredNames ..l 223
14.2.8 Runtime Semantics: Iterator Bindinglnitialisation ... 223
14.2.9 Runtime Semantics: Evaluate BoOdY ... 224
14.2.10 Runtime Semantics: EVvaluation ... 224
14.3 Method DefinitioNS ...cooiiiiiie e i e 225
14.3.1 Static Semantics: Early ErTOrS ... i e eeee s e e e sr e e e e e e e e e e e e et r s e e e e e e eeeaannn e e e eeeeenennnn 225
14.3.2 Static Semantics: EXpectedArgumMeEntCOUNT ... i e eee i e e e e eeeee e e e e e e eeeann e e eeeeenennas 225
14.3.3 Static Semantics: HasComputedPropertyKEY ..ottt cieeeiiiie e s e e eeeeeeiin e e e e e e ee e e e e e eeeaennns 225
14.3.4 Static Semantics: ISSIMpleParameterLiSt oo e 226
14.3.5 Static SemMantics: PrOPNEIME.iiiesiieehifoeiie e et e e e e e et et e e e e e e e areaar e e e e e eeeeeaanraeeeeeeeaennns 226
14.3.6 Static Semantics: ReEfEIrENCESSUPETocoiiiii i e e e e e e e e e e eeeaann 226
14.3.7 Static Semantics: <SpecialMethOd ...t e 226
14.3.8 Runtime Semantics: DefiNneMethod ...t 226
14.3.9 Runtime Semantics: PropertyDefinition Evaluationccccccoiiiiiiiiiiiiiiiiii e 227
14.4 Generator FUNCON DEfiNItiONS oo 228
14.4.1 Static Semantics: Early EITOIS ... e e e e e aaaa 228
14.4.2 Static Semantics: BOUNANAMESoooiiiiiiii i 229
14.4.3 Static SEMANLCS: CONTAINScooeiiiiiiiieiie e 229
14.4.4 Static Semantics: HasComputedPropertyKey oo, 229
14.4.5 Static Semantics: IsAnonymousFunctionDefinition ..., 229
14.46 Static Semantics: 1SConstantDeClaration ... 229
14.4.7 Static Semantics: LexXicallyDeclaredNamMESoooviiiiiiiiiiiiiiiiiiie e e e 230
14.4.8 Static Semantics: PrOPNAIMEcoooiiiiiiii 230
14.4.9 Static Semantics: REfEIENCESSUPELcooviiiiii i e e e e e e e e e e eeeeann 230
14.4.10 Static Semantics: _VarDeclaredNamMeEScoooiiiiiiiiiiii 230
14.4.11 Runtime Semantics: Evaluate BoOdY ... 230
14.4.12 Runtime Semantics: InstantiateFunctionODbJECt ..., 231
14.4.13 Runtime Semantics: PropertyDefinition Evaluationccccciiiiiii 231
14.4.14 Runtime Semantics: EVvaluation ... 232
145 Class DEfiNItIONS ..iiiiiiiiiiiiiiiiii ettt ettt ettt ettt 233
14.5.1 Static Semantics: Early EITOrS ..o, 233
14.5.2 Static Semantics: BOUNANAMEScooiiiiiiiii e 234
14.5.3 Static Semantics: Constructor Method ..., 234
14.5.4 Static SEMANLCS: CONLAINS ..oociiiiiiiiiee e e e e 234
14.5.5 Static Semantics: IsAnonymousFunctionDefinition ... 235
14.5.6 Static Semantics: 1SConstantDECIarationcoooviiiiiiiiiii 235
14.5.7 Static SEMANLICS: ISSLALIC ..oeveiiiiiiii e 235
14.5.8 Static Semantics: LexicallyDeclaredNamMEScoooiiiiiiiiiiii 235

© Ecma International 2013 Vil

secma

14.5.9 Static Semantics: Prototype MethodDefiNitioNSoeieiiiiiiiiiiiiiiiiieiiiii e 235
14.5.10 Static Semantics: Prototype PropertyNameLi Stoouiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeenneeeeees 236
14.5.11 Static SEMANtCS: PTOPNGIMEooiiiiiiiiiiiiiiiiiiee ettt ettt e ittt aaeaseesseaeseeeeeeseseeeeeseeennnnee 236
14.5.12 Static Semantics: Static PropertyNamMeELIStouuiiiiiiiiiiiiiiiiiiiiiiieiiiie e eeee v 236
14.5.13 Static Semantics: Static MethodDefiNItIONS coooeiiiiiiiii e 236
14.5.14 Static Semantics: VarDeclar@dNAMEScoiii i e e e 237
14.5.15 Runtime Semantics: ClassDefinitionEvaluation —coiiiiiiiiiiiiii e 237
14.5.16 Runtime SemanticS: EVAlUALIONcooiiiiiiiiii e e e e e e e e e e eeenenes 238
14.6 Tail POSIION CallS ..oooeeiiiiii e e e e e e e et e e e e et e e e ea e e e eaaeeeseaanaeaees 238
14.6.1 Static SemMantics: Tail POSILION iiii i e e e e e e e e e e e e e e eeeennns 238
14.6.2 Static Semantics: HasProductionINTailPOSItION uveiiiiiiiiiiees e 239
14.6.3 Runtime Semantics: PrepareForTailCall ... 243
15 ECMAScript Language: Modules and SCHPLS ...uiiiiiiiiiiiiiiii e afnne e e e e e e e e e e e eeeeees 243
0 R 1V o To (1] L=T S SRR RPPUN 243
15.1.0 MOAUIE SEMANLICS ...oiuiiiiiiiii i e e e e et s e e e adaaaann e e e sann et ae bt eeeeaaeeesstaeesesannaaanes 244
TR O R 11 o o T £ T TP PRSP PPPTTTN 248
L15.1.2 EXPOIES iiieiiiiiiiieeeiieeetiie e e ettt e e et e e ennnae s e e e eeeennnn s afe bt e ettt e e e e e e e e e e e R et e e e e e nnnaaas 250
15,2 SCHPES teetiiiiiiiiiiiiiiiiiittitieeeteeeeeteeeeeeeeeeeeeeeeeeeeeeeeeeesesseesesadhanaaseeeteeeeeeeeeeessnsessssssssannnabheceeeeeeeeeeenennnnees 254
15.2.1 Static Semantics: Early EITOrS oooiiiiiiiiiiiiiiiiiiieeeeafumiiiieeieiiieeeeeeeeeeeeeeeeeeassssseesasssabaeseeeeeeeeeeeenees 254
15.2.2 Static SEeMANtCS: ISSIICT ...eiiiiiiiiii it ettt e e e ettt e s e e e e e eeaaaaeeeeeeeeesannna e eeeeennnnnnn 254
15.2.3 Static Semantics: LexicallyDeclaredNamMES ...iiiiii i tie e e e e e e e eeaa e e e e e eeeaennas 254
15.2.4 Static Semantics: LexicallyScopedDeclaratiOonS ... coooeeve it eee i e e e 255
15.2.5 Static Semantics: VarDeclar@dNAMEScciiieiiiieiiiie i e et e e e e e e eeeeeeeeennas 255
15.2.6 Static Semantics: VarScopedDecClaratioNSuiiiieiieeerieeiiiie e e e e e e ee e e e e 255
15.2.7 Runtime Semantics: Script EVAlUALIONccooviiiiiiiis i 255
15.2.8 Runtime Semantics: GlobalDeclarationlnstantiation ... oot 255
15.3 Directive Prologues and the Use Strict. DIF€CHIVEccoviimiiitee e e 257
16 Error Handling and Language EXIENSIONS |uuue.iuuuuueee e eeieee s s 257
17 ECMASCcript Standard Built_ -in OBJECES ..ot 259
18 LTSI €1 1] o F= L @ 1= o A PRSPPI 260
18.1 Value Properties of the Global ODJECE iiiiiiiiiiiiiiiii e 260
R 200 00t 1 o) 1 1 SRR PPPPPPPPPRPRRPN 260
R T O - | O S N o SRR PPPPPPPPPPRRPN 260
18.1.3 UNAEFINEU ..ot iiiiiiiie ettt Rttt ettt ettt ettt ettt ettt ettt st s e et e et s e e e s eeeeennenennnnen 260
18.2 Function Properties of the Global ObJeCt ... e 261
ST R = - 1§ SN 261
18.2.2 iSFINITE (NUIMDEE).oi ittt ettt ettt ettt et ettt e et ee st eeeeaseeeeeeeeeeeeeeeees 262
S 7 B 1= = L I (10 0] 0 T= 5 SR 262
18.2.47 PArSEFIOAL (SLNQ) weiieeiiiiiiiiiiitte ittt ettt ettt ettt ettt ettt ettt ettt ettt e eeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeees 262
18.25 PArselnt (StNG , FAAIX) |eeeeeeeiirre ittt et e e eeeeeeaseeteseeeseeseseseseaeseeseeeeesassnenennnnnnees 263
18.2.6 URI HanNdliNG FUNCLION i it e e e e e e ettt e e e e e e e e e e et s e e e e eeeaaataaeeeeeeeesnnnnan 263
18.3 Constructor Properties of the Global ObJeCt ... e 268
R T Tt Vg - Y (S T PP PPPPPPRRNE 268
S T N =\ Y/ = U (= O (T T SR 268
S JC ToC T = To To 1= = Vo I (O PP 268
TR B - L= N A1 T O PRSP PPPPPPPPPPP 268
T TR - (N (T T PP PPPPPPRRPPNt 268
R T T T =y o T (T PP PPPPPPPRPNS 269
T T A A = 1| =1 o (o o (R PRSPPI 269
18.3.8 FIOAIB2AITAY (. . .) teettiiiiiiiiiiiiiii ittt ettt ettt ettt ettt et ettt et ettt e e ettt et e e ettt e et e e teeteeeteeteeeeeeeeeees 269
18.3.9 FIOAIBAAITAY (. . .) teeeeeiiiiiiiiiiiiii ittt ettt ettt ettt ettt ettt ettt ettt et e et ettt et ettt e eeeeeeeeeeeeeeeeeeseseeeseeeeeeeeeeeeeees 269
R T T 0 0 Tox 7o o I (R PSP 269
e T A g 27 = Y (P PRSPPI 269
e T g YY1 =\ Y (T TP 269
e T) e 2 Y 4 -\ Y (T OSSP 269
R T T 1Y - o I (T PP PPPPPPPRRPNS 269
e T 101 o1 1= (R PP 269

viii © Ecma International 2013

~ecihd

L18.3.16 OBJECE (. . .) ceiiiiii i 269
18.3.17 RANGEEITON (. . .) teiiiiiiiiiiiii ittt ettt ettt e e eeeees 269
18.3.18 RETEIENCEEITON (. . .) tiiiiiiiii e 269
L18.3.L9 REGEXD (-« +) teettiiiiiiiiiii it 269
18.3.20 St (. .+ .) i 269
L18.3. 2L SHNG (.« .) ceiiiiee e 270
18.3.22 SYMDBOI (. 1 .) teiiiiiiii 270
18.3.23 SYNTAXEITON (. .+) tettiiiiiiiiiti ittt ettt ettt ettt e e ee e e e eeeeeeees 270
18.3.24 TYPEEITON (. 1 .) teiiiiiii e 270
L8.3.25 UINTBAITAY (- - .) teetiiiiiiiiiiiii ittt ettt ettt ettt ettt e et et et e e et et e e e eeeeeeees 270
18.3.26 UINtBCIaMPEAAITAY ([« « +) teeeeiiiiie e 270
18.3.27 UINTLOAITAY ((+ .+) teeiiiiiiiiiiiiiii ettt afo et ettt eees 270
18.3. 28 UINTB2AITAY ((+ +) teieiiiiiiiiiiiii ettt afo ettt eeees 270
ST T I U L | =t o T (R PP 270
18.3.30 WEAKMAP (-« +) teiiiiiiiiiiiiiiii ettt afo ettt Bttt 270
TR R R V=T 1 T= A (P T PR US 270
18.4 Other Properties of the Global OBJECE ooiiiiiiiiiiii i e 270
S N 1 S SRR 270
RS 0 |V - 1 o SRR 270
L18.4.3 PrOXY (« « v) teeeieiiiii e 271
S R o L Yo U S 271
19 Fundamental ODJECES oviiiiiiiiiiiiiiiiiiiiiiieieei et B e eeeeee o e aaat ettt eeeebe st baeeeeeneeenee 271
19.1 ODBJECE ODJECIS oiiiiiiiiiiiiiiiii ettt 271
19.1.1 The ObJECt CONSIIUCIOT ...coeiiiiieiei e 271
19.1.2 Properties of the ObJECt CONSIIUCION ceiiiiiiiiiiiiis e eee e is e oe et e e e e e e e e e e e s e e e e eeaaenaeeeeeeenennns 271
19.1.3 Properties of the Object Prototype OBRJECE ... e e e e e e e e 277
19.1.4 Properties of ODJECt INSLANCESiiiiii it e i e e e e e e ee e e e e e e et e et e e e e e e eeeeeaannreeeeeeeenennnn 279
S 2 U1 Tor 1o) o] [T £ SO 279
19.2.1 The Function CONSIIUCIOTN ..oooiiiiiii e i 279
19.2.2 Properties of the FUNCLION CONSITUCIOr oiiiiuueidiiier s eee e e e e e e e s e e e e e e e s e e e e e e enannnen 281
19.2.3 Properties of the Function Prototype ObJeCt (e e e e e 281
19.2.4 FUNCHON INSLANCES Aiiiiiiiiiii i e 284
TR B = o o (== T T @] o)=Y ot S SSPPPRN 285
19.3.1 The B0olean CONSIIUCION oiiiiriiiiiiiei e e 285
19.3.2 Properties of the Boolean CONSIIUCION.iieiitiiiiiiiis e e e e e e e e e e e e e e e e e eeaeanan 285
19.3.3 Properties of the Boolean Prototype OBJECt oo 286
19.3.4 Properties of BOOIeaN INSTANCES coooiiiiii e e e e e e e e e e e e e e eaarees 286
B Y 191 0 To | I @] o] = o] £~ SSPPRPSN 286
S R I o =TS} g o o] R @] 13 1 (1 o2 (o | S 286
19.4.2 Properties of the SYmbol CONSIIUCION ooviiiiiiiiiiiiiiie e 287
19.4.3 Properties of the Symbol Prototype ObJECt ..o, 288
19.4.4 Properties of SYmMbBOlINSIANCESoi oo 289
SR T 1 o T A @ o] [=Tox £ USSP 289
19.5.1 TRE EOr CONSIIUCION | oo 290
19.5.2 Properties of the Error CONSITUCIOr cooiiiiiiiii i e e e e e e e e e e e aa e e e e e e e eeaennns 290
19.5.3 Properties of the Error Prototype ObJECt ..o, 291
19.5.4 PropertieS of Err0r INSLANCES ...oooiiiiiiiie 292
19.5.5 Native Error Types Used in This Standard ..., 292
19.5.6 NativeError ODJECt SITUCIUIE oo 292
20 N TUTag] o Tt ST To B I = L 1= PP PPPPPPNt 295
P20 R N (U101 o 1= G @ o 1= o £SO PPPPPPPPPPPPP 295
20.1.1 The NUMDEI CONSIIUCLON eviiiiieiiiieiieeieesssesesssssssssssssssssssssessssssssnnnsnnnes 295
20.1.2 Properties of the NUMBEr CONSIIUCIOTr oiiiiiiiiiiiiiiiiieeieceeee ettt aeeeeeseeeeseeeeesennees 295
20.1.3 Properties of the Number Prototype ODJECE ...oevviiiiiiiiiiiiiiiieiieeeeeeieieeee e eeeeeeeeeeeeeeeeneee 298
20.1.4 Properties of NUMDEI INSTANCES oiiiiiiiiiiiiiiiiiiiiiiee ettt eeeeeeaeaassssesaesssssssssssssenssnnnes 302
b0 I L= 1Y =i T o= AP PPSPPPPPPPPPP 302
20.2.1 Value Properties of the Math ODJECT coiiiiiiiiiiiiiiiiiiiieee et eeeeeees 303
20.2.2 Function Properties of the Math ODJECE eeiiiiiiiiiiiiieeeeeeeee e eeeeanee 304

© Ecma International 2013 iX

20.3

20.3.1
20.3.2
20.3.3
20.34
20.35

21
21.1
2111
21.1.2
21.1.3
21.14
21.15
21.2
21.2.1
21.2.2
21.2.3
21.24
21.25
21.2.6

22
22.1
221.1
22.1.2
22.1.3
22.1.4
22.1.5
22.2
22.2.1
22.2.2
22.2.3
22.2.4
22.2.5
22.2.6
22.2.7

23
23.1
23.1.1
23.1.2
23.1.3
23.1.4
23.1.5
23.2
23.2.1
23.2.2
23.2.3
23.2.4
23.2.5
23.3
23.3.1
23.3.2
23.3.3
23.3.4
23.4
23.4.1
23.4.2
23.4.3
23.4.4

eCnd

D=1 (3 O o] [T o £ 312
Overview of Date Objects and Definitions of Abstract Operations ..., 312
THE DAE CONSIIUCTON ...eeiiiiiiiiiiiiiiiieet ettt ettt ettt ettt ettt ettt et e e et e e e e e e e e e e e e s e s e eeeesssessnsnssnnnnnne 317
Properties of the Date CONSIIUCIOT uuuiiiiitiiiiiiiiiieitbbb bbb 319
Properties of the Date Prototype ODJECT uuuuuiiiiiiiiiiiiiiiiiibiiiiii bbb 320
Properties Of DAte INSTANCES uuiiiiiiiiiiiiiiiiiii s 329
L=l (o Tol =Tt | o o [P T PP PPPP P PP PPPPPPPPPPPP 329
SHING ODJECIS e 329
The StriNG CONSIIUCION ...eeiiiiiiiiiiiiiiii ittt ettt et e et et et e et e et et e e ee et e e eeeeeeessansnesnnnnnne 329
Properties of the String CONSIIUCION uuiiiiiiiiiiiiiiiitbbb bbbt 330
Properties of the String Prototype ODJECT iiiiiiiiiiiiiiiiiiie s 332
Properties of SING INSTANCES uuiiiiiiiiiiiii iR 345
String Iterator ODJECES ooiiiiiiieeee e 345
RegExp (Regular EXPression) ODJECS uuuuuiuuuieiiiiiiiiiititnnieiieeeadhannssstbe e eeeeeneeeeeeeeeeneeeaeee 346
= L= 1 1 T U S U PPNt 347
V1T BT =0 o o (o 349
The REgEXP CONSIIUCIOT ...iiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieeeeeeeeeee sdfhue e eeeeeeeeeeeeeeeeessasasabae e eeeeeeeeeeesenensnnnnees 362
Properties of the REGEXP CONSIIUCION uuuuiiiiiiiiiiiieebanstneeneeeeieiniieeeneenennaeeesassss e eeeeneeneeenaenee 364
Properties of the RegEXp Prototype ODJECT iiiin it s 365
Properties of REGEXP INSTANCES uuiiiiiiiiiiiiiiiit bttt s 372
10 (=3 To I @o] | F=T ot i o] 1 S 372
FN g =\ Y@]] 1= ox £ PP PPPUPPPPPPP 372
THhe Array CONSIIUCIOT ...iiiiiiiiiiiiiiiiiiiiiiiiieiieieeeieeeeeeeesasse e Badeeatar e eeeeeeeeeeeeeee e e e et eeee et et eeeeeeebesabeneennnnnnes 372
Properties of the Array CONSITUCIOr iii i e e e e e e e e e e e e e e e e e e e aenn e e eeeees 374
Properties of the Array Prototype ODJECE o ...coieeiiii e e 376
Properties of Array INSTANCES coviiiiii e it s e e e e s ae e e e S ettt e s e e e e e e aeaan e e eeeeeeeennnaneeaeeaees 401
F N = VA LT =1 (0] @] o=l 401
B3/ 010 TN = YA @ o] 1= £ s S 403
The %TypedArray% INtrinSiC ODJECT ..ot e i et e e e e e e e e e e e eeeana s 403
Properties of the %TypedArray% IntrinSiC ODJECToiiii i e 407
Properties of the %TypedArrayPrototype% ODBJECT oovriiiii e e 409
The TYPedAITaY CONSIIUCIOIS ..o iiiiiiiiiii s ie e e it e e e e e e s e e e e e e e ettt aaeeeeeeeaaanaaeeeeeeeeesnnnnaeas 419
Properties of the TypedArray CONSIIUCIOIS iiuiie.iiieeiiiieiiiii i e e e e ce et e e e e e e et e e e e e e e e e eaeaens 420
Properties of «TypedArray Prototype ODJECIS iiiiiiiii i e 420
Properties of TYPEdAITaY [NSIANCES ...iiiiiieeeiiisiii i i e et ee e e e e e e e e e e e e e e e eeeees 420
(=T I @o]| [=Tod 1T o T S 421
Y= T T] o] =T o] RS 421
QI (1Y T o @0 1 (0 T (o] 421
Properties of the Map CONSIIUCTOr ooooiiiiii e 422
Properties of the Map Prototype ODbjJect ... 422
Properties of Map INSTANCESo e e e e e e e e e e e e e e e e eaaa e eaaaeees 426
1 TN A= =1 (o] g @ o) =Tt £ T USSR 426
SEEODJECES .o, 427
THE SEE CONSIIUCTON £ 1iii ittt ettt e e e s s e et e e e e e e bbb e e et e e e s s aannb bbb e e eeeeeeeeannnnnes 427
Properties Of the SEt CONSIIUCION uuuuiiiiiiiiiiiiiietieirirraeeie bbb ennneennnnnnnnes 428
Properties of the Set Prototype ODJECE uuiiiiiiiiiiiiiiiiiiiiiiii e 429
Properties Of SEL INSLANCES uuuiiiiiiiiiiiiiiiiiiiiiii s as 432
St HHEratOr ODJECIS oiiiiiiiiiiiiii ettt 432
R T2 LY = o T o)=Y o £ 433
The WeakMap CONSIIUCIOT viiiiiiiiiiiiiiiiiiieiie ittt ee ettt e e e eteeteeeesaeeseeeseeeeeeeseeeeeesssnnnnnes 434
Properties of the WeakMap CONSITUCION uuuuuuuiiiiiiiriiiririnrernneeenaeeeeeneeeeneaneeaneeeeeeennnnnnnnnnnnnnne 435
Properties of the WeakMap Prototype ObJECE uuiiiiiiiiiiiii s 436
Properties of WeakMap INSLANCES uuuuuuiiiiiiiiiiiiiiiiiiirineiiineereneeeeeeeneereereereeennnnnnenneennnnnnnnes 437
R Y=o LSS A @] o] =2 437
THe WEaKSEt CONSIIUCIOT iiiiieiiiiiitiiii ettt e ettt e e e e e et r e e e e e e e an bbb e et e e e e s s e annnnnees 438
Properties of the WeakSet CONSIIUCIOr uuiuuiiiiiiiiiiiiiiiiiiieieeiiieeeneeeeeaeeeanerneeennnsnnnnnnnes 439
Properties of the WeakSet Prototype ODJECT iiiiiiiiii s 439
Properties 0f WeaKSet INSTANCES uuuuiiiiiiiiiiiiiiiiiiiiiieiiiiiiiiiiereeeeaeeerereerrereennnnnnnnnsnnensnnnnnnnes 440

© Ecma International 2013

~ecihd

24 YU [o LU= To [T - PP SUSPPPRRRPP 441
241 ArrayBUTTEr ODJECES oottt ettt ettt e et e e e ettt e nnnennnrnnnnnnne 441
24.1.1 Abstract Operations For ArrayBuffer ODJECIS ...eoiiiiiiiiiiiiiieeieee e 441
24.1.2 The ArrayBuffer CONSIIUCION oiiiiiiiiiiiiiiiiieii ittt at e e e et e e e sseseeeeeeeseeeenbennee 443
24.1.3 Properties of the ArrayBuffer CONSITUCION iiiiiiiiiiiiiiiiieeee ittt e e e eeeeeeeeanees 443
24.1.4 Properties of the ArrayBuffer Prototype ODJECTooiiiiiiiiiiiiiiiiiiiiieieee s 444
24.1.5 Properties of the ArrayBuffer INSTANCES oeiiiiiiiiieeee et eneees 445
24.2 DAt@VIEW ODJECES ...iiiiiiiiiiiiiiiiiiiiiii ettt ettt ettt ettt ettt ettt ettt ettt te ettt et att et e e ae et e e e eeeeeennees 445
24.2.1 Abstract Operations For DataView ODJECIS eiiiiiiiiiiiiiiiiiiiiie ittt e e eeeeeeaeeeeeeeeeennees 445
24.2.2 The DataVIeW CONSIIUCTON ...iiieiiiiiiii e e eiie ettt e e ettt s e e e e e e e e eette s e e e e eeeaesaaseeeeeeeeesnnnnsaeeeeeennnnnnn 446
24.2.3 Properties of the DataVieWw CONSIIUCION viiiieiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeessesssssssssesnsennnes 447
24.2.4 Properties of the DataView Prototype ODJECt oiiiiiiiiiiiiiiiiiiiiiiieiiiee e adhaie b 448
24.2.5 Properties of DataView INSTANCES oiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeee et b etttr ettt ee e eeeeeeeeeees 451
i T I L= 1T 1IN I @)= ox S PP 451
24.3.1 JSON.pPArse (tEXE [, FEVIVEI]) eeeiiiiiiiiiiiiiiiiiiieeeeeeieeeeeteeeeeeeeeeeeeeedbnnssnasseabaeseeeeseessessesessensesseennnsnnnes 451
24.3.2 JSON.stringify (value [, replacer [, SPACE J]) weeeeeerremmemeeeeeeadieninreeeeeesiussssbneeeeeeeeeeeseeeeneeeesennnennnes 453
24.3.3 JSON [@ @OSHANGTAG] vvveevrrerrreiiireeiiiieeiueeessteessseeessseessesesstseessssseesssesssnssshineessssesssseesssseeessseenns 457
25 Control Abstraction ODBJECIS .oooeiii i 458
25.1 Common Iteration INEIFACES uveiiiii i e e ot e e e e et e e e e e e e e eaeennseeeeesaeanabae e eeeeeeeennnnnn 458
DA I A I U= 1 (=T T o (=) = = Lo = o U 458
25.1.2 The Rerator INTEIFACEccoiiiiiiiiiii i sfe e e tee s e e e e e e e e e e a s i e e e e et s e e e e e eeeaeen e e eeeeeeeennnnnn 458
25.1.3 The IteratorResUlt INTEIFACEuvveiiiiiiiieee e e afe et e et e e e e e e e e e e e e e e e e e aenennns 458
25.2 GeneratorFUNCHON ODJECIS oiiiiiiiiiiiiiiiiiiiiiiiiiiiieesitssse b e o tteae e eeeeeeeeateaeeeeeeeeseeeeeseeseeeeeeeaeebebbennnes 459
25.2.1 The GeneratorFuncCtion CONSIIUCION ..iviuuiiiiiieciiieeeiisas e e e e eear e e e e e e eeeeeter s e e e e e eeaenaaeeeeeeeeennnnnnnes 459
25.2.2 Properties of the GeneratorFuNction CONSIIUCIOrueiiii et e e 461
25.2.3 Properties of the GeneratorFunction Prototype Object ...t 462
25.2.4 GeneratOrFUNCHON INSTANCES oiiiiiiiiiheee s eieeee s i eeeeeeeeeeeeee s sasss e Bae e eeeeeeteeeeeeesseesesseseseseseeneeenebnnnes 462
A T T € 1= o =T = (o] GO o= o) N 463
25.3.1 Properties of Generator ProtOtYPe ..o et i i et ee s 463
25.3.2 Properties of GENerator INSTANCES ovvieiih i cdeiiir e e e e e e e e e e e e e et s e e e e e e e e e e e eeeeannnaas 464
25.3.3 Generator ADSIract OPEIALIONS "coeeeiisieiioe it e e et e e e e e e e e et e e e e e e e e ees e e e e e e eeeesnnnreeeeeeeeannnnn 465
26 L= 1=Td o o o S PPN 466
P2 0 R I U= L =] o] =T o SN 466
26.1.1 Reflect.defineProperty(target, propertyKey, attributes) ..ooovveiiiii e 466
26.1.2 Reflect.deleteProperty (target, PropPertYKEY). ..o e e e e e e e e e e e e e aaaeaaan 466
26.1.3 Reflect.enUMErate (TAIgEL) ..oiiieeiiiii i e e e e e e e e e e e e e e e e e e e aaa e e e e e e eeeeaann e eeeeeaeannnnn 466
26.1.4 Reflect.get (target, propertyKey, reCeiVer=target) cccooiieiiiiiiiiiiiie e e e e e 467
26.1.5 Reflect.getOwnPropertyDescriptor(target, propertyKey) oooviiii i 467
26.1.6 Reflect.getPrototypeOf (TArGEL).eeiiiiiiiiiiiiiiiiiiiiii ettt e et eeeeeeeeaeeeeeeeseseeseeseeessssssennnes 467
26.1.7 Reflect.has (target, PropertyKEY)oe ittt eeeeeeeaaeeeesssasssessesesssseeseennees 467
26.1:8 Reflect.hasOwn (target, PropertyKBY) ..ooeeeeiiiiiiiiiiiiiiiiiiiiee ettt e e e eeeeeeeeeeees 467
26.1.9 Reflect.iSEXIENSIDIE (TANGEL) eeiiiiiiiiiiiiiiiiiiiii ittt et ettt eaaseesseasesesseeeeeeesennnnnnes 467
26.1.10 Reflect.OWNKEYS (TAIGEL) | ...eeeeieiiiiiiiiiiiiiiiiiiiti ettt et ee ittt ettt st e s s et s s aee st e sseeeeessssennnennnes 468
26.1.11 Reflect.preventEXtENSIONS (TAIJEL) ...eviiiiiiiiiiiiiiiiiiiiiiii ettt et et e e e eeeeeeaeeaeeeeeseeaeeeeeeeeeeeeeeees 468
26.1.12 Reflect.set (target, propertyKey, V, reCeiVer=target) ooeeeeeeiiiiierieiieieiiieeeeeeeeeeeeeeeeere.. 468
26.1.13 Reflect.setPrototypeOf (target, Prot0) ...ieeeeiiiiiiiiiiiiiiiiiiiii ettt ettt e e e e e e e eeaeeeeeeeeeeeeeeeeeeeeeees 468
BT A = (o) A ©]] 1= o £ PRSP PPPPPPPPPPP 468
26.2.1 The ProxXy FacCtOry FUNCHON iiiiiiiiiiiiiiiiiiiiiiieiieei ettt e ettt et esssssssssessseseeeeeesenrnnnnes 468
26.2.2 Properties of the Proxy Factory FUNCLON oiiiiiiiiiiiiiiiieieeieeeeiiiiiiieee et eeeeeeeeeeeeeeeeeeeeeeseeseeeeeennee 469
Annex A (informative) Grammar SUMIMAIY ooooiiiiiiiiiii e e e e e 470
Al LEXICAI GIAIMIMAT ..iiiiiiiiiiiiiiiiiiiie ettt ettt ettt ettt ettt ettt e ettt et et et ettt e e e e e eeeeeesasesseeeeeeeeeeeenneenees 470
A2 N TUTag] o1 @a] N =T] T] 1P PPPPPPRt 476
A.3 (oL E T[] 1 PSP UPPPPPPPNS 477
A4] E2 10T 01T 01 ST PUPPPTT PP 480
A5 U a T 1To] =T o IR o3 T o] £ PP PPPPPPRt 482
A.6 Universal Resource Identifier Character ClasSeS ... s 483
A7 REQUIAT EXPIESSIONS ..oeiiiiiiiiiitieieiiieeetttteteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesssssessssssssssssssssesssssssssssssasssssnnnnnnes 484
A.8 JSON Error! Bookmark not defined.

© Ecma International 2013 Xi

A8.1
A.8.2

Annex
B.1
B.1.1
B.1.2
B.1.3
B.1.4
B.2
B.2.1
B.2.2
B.2.3
B.2.4
B.2.5
B.3
B.3.1
B.3.2

Annex
Annex

Annex

E.l
E.2

Annex

Xii

»eCma

JSON LexiCal GramIMArcooiviiiiiiiiiiiiiiiiiiiiiiiei ettt Error! Bookmark not defined.
JSON SyNtactiC GramMarcceeiiiiiiiiiiiiiiiiiiiiiiiieeeeeee et Error! Bookmark not defined.
B (normative) Additional ECMAScript Features for Web Browsers —ooeiiiiiiiiiiiiieiieeeeeeiiiiiienns 487
F e (o111] g = LS} 1= G 487
N LU= o (=T = £ 487
SHING LITEIAIS i 487
(o I Y 1S @ o 0 1= o) USSR 488
Regular EXPreSSions PattEINS ittt s 488
AAItIONAI PrOPEITIES ..ttt s 491
Additional Properties of the Global ODJECT iiiiii s 491
Additional Properties of the Object.prototype Object ... b 492
Additional Properties of the String.prototype ODJECT uuiiiiiiiii s 493
Additional Properties of the Date.prototype ODJECEeiiiiiiiiii s 496
Additional Properties of the RegExp.prototype ObJect eieeidiimiiiiieiiiiiiies 496
Other Aditional FEAtUIES oiiiiiiiiii et e e e e e e bt s e e e saeeeabbe e e e e e e eeeeettens e e eeeeeenennan 497
__proto____ Property Names in Object InitialiSers ... 497
Web Legacy Compatibility for Block -Level Function Declarationsccceibeeeeeeeeeeeeeeriiiniennnns 497
C (informative) The Strict Mode of ECMASCHIPt oot 499
D (informative) Corrections and Clarifications with Passible Compatibility Impact ~ oeeeeis 501
E (informative) Additions and Changes that Introduce Incompatibilities with Prior

010 SR 504
INhE 6™ EQIION ©...oovoeeivceiceciececee et et Bada s 504
INHE 5™ EION ..ov.viiviiiieieieieice et aism s 505
F (informative) Static Semantic Rule Cross Reference ..ot 509

© Ecma International 2013

| INTERNATIONAL

© Ecma International 2013

|
I

Xiii

»eCma

Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared in that re0browsenlyhsappdaed ingllsstbsequent browsers from Netscape
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular‘expressions, better string handling, new control
statements, try/catch exception handling, tighter definition<of errors, formatting for numeric output and minor
changes in anticipation of forthcoming internationalisation facilities and future language growth. The third
edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and
published as ISO/IEC 16262:2002 in June 2002.

Since publication of the third edition, ECMAScript has achieved massive adoption in conjunction with the
World Wide Web where it has become the programming language that is supported by essentially all web
browsers. Significant work was done to develop a fourth edition of ECMAScript. Although that work was not
completed and not published! as the fourth edition of ECMASEript, it informs continuing evolution of the
language. The fifth edition of ECMAScript (published as ECMA-262 5" edition) codifies de facto
interpretations of the language specification that have become common among browser implementations and
adds support for new features that have emerged since the publication of the third edition. Such features
include accessor properties, reflective creation and inspection of objects, program control of property
attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict
mode that provides enhanced error checking and program security.

The edition 5.1 of the ECMAScript Standard has been fully aligned with the third edition of the international
standard ISO/IEC 16262:2011.

Thi s« present sixth edition of the Standardeéé

ECMAScript is a vibrant language and the evolution of the language is not complete. Significant technical
enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

INot e: Pl ease note that for ECMAScri pt-2®R&idiitomnd 40hevaBc ma&selr a®
used in the Ecma publi cat i-206n2 pEdoicteisosn. 4Toheasfam eEGMBLMANt er nat i
exist.

Xiv © Ecma International 2013

~ecihd

"DISCLAIMER

This draft document may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed,
in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to Ecma International,
except as needed for the purpose of developing any document or deliverable produced by Ecma
International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the
standard are reserved by Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by
Ecma International or its successors or assigns during this time:

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

© Ecma International 2013 XV

seCma

ECMAScript Language Specification

1 Scope

This Standard defines the ECMAScript scripting language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of ECMAScript must interpret characters in conformance with the Unicode
Standard, Version 5.1.0 or later and ISO/IEC 10646. If the adopted ISO/IEC 10646-1 subset is not otherwise
specified, it is presumed to be the Unicode set, collection 10646.

A conforming implementation of ECMAScript that provides an‘application programming interface that supports
programs that need to adapt to the linguistic and cultural conventions used.by different human languages and
countries must implement the interface defined by the most recent edition of ECMA-402 that is compatible
with this specification.

A conforming implementation of ECMAScript may provide additional types, values, objects, properties, and
functions beyond those described in this.specification. In particular, a conforming implementation of
ECMAScript may provide properties not described in this specification, and values for those properties, for
objects that are described in this specification.

A conforming implementation of ECMAScript may support program-and regular expression syntax not

described in this specification. Inparticular, a conforming implementation of ECMAScript may support program
syntax that makes wuse of t heubdiafise 1116.2.2 of thie spexificaterd wor ds o

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 10646:2003: Information Technology 1 Universal Multiple-Octet Coded Character Set (UCS) plus
Amendment 1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional
amendments and corrigenda, or successor

The Unicode Standard, Version 5.0, as amended by Unicode 5.1.0, or successor

Unicode Standard Annex #15, Unicode Normalization Forms, version Unicode 5.1.0, or successor

Unicode Standard Annex #31, Unicode Identifiers and Pattern Syntax, version Unicode 5.1.0, or successor.

ECMA-402, ECMAScript Internationalization API Specification.
http://www.ecma-international.org/publications/standards/Ecma-402.htm

ECMA-404, The JSON Data Interchange Format.
http://www.ecma-international.org/publications/standards/Ecma-404.htm

4 Qverview

This section contains a non-normative overview of the ECMAScript language.

© Ecma International 2013 1

http://www.ecma-international.org/publications/standards/Ecma-402.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm

»eCmna

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or
output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMAScript program.

A scripting language is a programming language that is used to manipulate, customise, and automate the
facilities of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes the
capabilities of the scripting language. A scripting language is intended for use by both professional and non-
professional programmers. ECMAScript was originally designed to be used as a scripting language, but has
become widely used as a general purpose programming language.

ECMAScript was originally designed to be a Web scripting language , providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript is now used both as a general propose programming language and to provide core scripting
capabilities for a variety of host environments. Therefore the core language is specified in this document apart
from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular C,
Javad, Self, and Scheme as described in:

ISO/IEC 9899:1996, Programming Languages i C.

Gosling, James, Bill Joy and Guy Steele. The Javal Language Specification. Addison Wesley Publishing Co.,
1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp.
2271 241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. IEEE Std 1178-1990.
4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies,
and input/output. Further, the host environment provides a means to attach scripting code to events such as
change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed page is a combination of user interface
elements and fixed and computed text and images. The scripting code is reactive to user interaction and there
is no need for a main program.

A web server provides a different host environment for server-side computation including objects representing
requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side
scripting together, it is possible to distribute computation between the client and server while providing a
customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

2 © Ecma International 2013

~ecnd

4.2 ECMAScript Overview

The following is an informal overview of ECMAScriptd not all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. In ECMAScript, an object is a collection of properties each
with zero or more attributes that determine how each property can be usedd for example, when the Writable
attribute for a property is set to false, any attempt by executed ECMAScript code to change the value of the
property fails. Properties are containers that hold other objects, primitive values , or functions . A primitive
value is a member of one of the following built-in types: Undefined , Null, Boolean , Number, Symbol and
String ; an object is a member of the remaining built-in type Object; and a function is a callable object. A
function that is associated with an object via a property is a method .

ECMAScript defines a collection of built -in objects that round out the definition of ECMAScript entities. These
built-in objects include the global object, the Object object, the Function object, the Array object, the String
object, the Boolean object, the Number object, the Math object, the Date object, the RegExp object, the
JSON object, and the Error objects Error, EvalError , RangeError, ReferenceError, SyntaxError, TypeError
and URIError.

ECMAScript also defines a set of built-in operators . ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators,
binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as
an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are
types associated with properties, and defined functions are not required to have their declarations appear
textually before calls to them.

4.2.1 Objects

ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in
various ways including via a literal notation or via constructors which create objects and then execute code
that initialises all or part of them by assigning initial values to their properties. Each constructor is a function
that has a prpotptye to tnhaarte di i u s prototypeo-basenh imHeritane nand shared
properties . Objects are created by using constructors in new expressions; for example, new
Date(2009,11) creates a new Date object. Invoking a constructor without using new has consequences that
depend on the constructor. For example, Date() produces a string representation of the current date and
time rather than an object.

Every object created by a construct or prdiotyge) tathe valuapfl i c i
i ts consprototypet Or psoperty. Fur t imayrhave a ren-nulbimpicit eferenteytqite
prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object,

that reference is to the property of that name in the first object in the prototype chain that contains a property

of that name. In other words, first the object mentioned directly is examined for such a property; if that object
contains the named property, that is the property to which the reference refers; if that object does not contain

the named property, the prototype for that object is examined next; and so on.

© Ecma International 2009 i All rights reserved

eCima

4 H .
H— 1
CF : implicit protatypelink
prototype i cF, . " N
Pl L
po CFP1 explicit prototype property
¥] I] A
Cfi Erz [-f3 l:-fa, - [.’f5
gl ol ol gl gl
o2 o2 q2 e 2

Figure 18 Object/Prototype Relationships

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by
classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried
by objects, while structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cf;, cf,
cfs, cf4, and cfs. Each of these objects contains properties named g1 and 2. The dashed lines represent the
implicit prototype relationship; so, for example, cf;6 s p r o tG¥g. Yhe ensirustor, CF, has two properties
itself, named P1 and P2, which are not visible to CFy, cfy, cf,, cfs, cf4, or cfs. The property named CFP1in CF,
is shared by cf,, cfy, cfs, cfs, and cfs (but not by CF), as are any properties found in CF,6 s i mpl i ¢
chain that are not named g1, g2, or CFP1 Notice that there is no implicit prototype link between CF and CF,,.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to
them. That is, constructors are not required to name or assign valuestoalloranyof t he const
properties. In the above diagram, one could add a new shared property for cf,, cf,, cfs cfs, and cfs by
assigning a new value to the property in CF,.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognises the possibility that some users of the language may wish to restrict
their usage of some features available in the language. They might do so in the interests of security, to avoid
what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their
choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant
of the language excludes some specific syntactic and semantic features of the regular ECMAScript language
and modifies the detailed semantics of some features. The strict variant also specifies additional error
conditions that must be reported by throwing error exceptions in situations that are not specified as errors by
the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode

selection and use of the strict mode syntax and semantics of ECMAScript is explicity made at the level of
individual ECMAScript code units. Because strict mode is selected at the level of a syntactic code unit, strict

4 © Ecma International 2013

it prot

ructed

~ecnd

mode only imposes restrictions that have local effect within such a code unit. Strict mode does not restrict or
modify any aspect of the ECMAScript semantics that must operate consistently across multiple code units. A
complete ECMAScript program may be composed for both strict mode and non-strict mode ECMAScript code
units. In this case, strict mode only applies when actually executing code that is defined within a strict mode
code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by this
specification. In addition, an implementation must support the combination of unrestricted and strict mode
code units into a single composite program.

4.3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.

43.1

type
set of data values as defined in clause 6 of this specification

4.3.2
primitive value
member of one of the types Undefined, Null, Boolean, Number, Symbol, or String as defined in clause 6

NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.
4.3.3

object
member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.
4.3.4
constructor

function object that creates and initialises objects

NOTE The value of prototygen t puotpenrdsy fi s a pr ot o tplerpeatinbedtaneec t t
and shared properties.

4.3.5

prototype

object that provides shared properties for other objects

NOTE When a constructor creates an object, tpraotypeold] @c to piemi
for the purpose of resolvi ng property refer emproteype OThper opeEmdtyr uccatnor bes rie
program expression constructor .prototype and properties added to an obj ecH

inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified
prototype by using the Object.create built-in function.

4.3.6
ordinary object
object that has the default behaviour for the essential internal methods that must be supported by all objects.

4.3.7

exotic object

object that has some alternative behaviour for one or more of the essential internal methods that must be
supported by all objects.

NOTE Any object that is not an ordinary object is an exotic object.

© Ecma International 2009 i All rights reserved

secma

4.3.8
standard object
object whose semantics are defined by this specification.

4.3.9

built -in object

object supplied by an ECMAScript implementation, independent of the host environment, that is present at the
start of the execution of an ECMAScript program

NOTE Standard built-in objects are defined in this specification, and an ECMAScript implementation may specify and
define others. A built-in constructor is a built-in object that is also a constructor.

4.3.10
undefined value
primitive value used when a variable has not been assigned a value

4.3.11
Undefined type
type whose sole value is the undefined value

4.3.12
null value
primitive value that represents the intentional absence of any object value

4.3.13
Null type
type whose sole value is the null value

4.3.14
Boolean value
member of the Boolean type

NOTE There are only two Boolean values, true and false.

4.3.15
Boolean type
type consisting of the primitive values true and false

4.3.16
Boolean object
member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean value
as an argument. The resulting object has an internal slot whose value is the Boolean value. A Boolean object can be
coerced to a Boolean value.

4.3.17
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a single
16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that
they must be 16-bit unsigned integers.

6 © Ecma International 2013

oecind

4.3.18
String type
set of all possible String values

4.3.19
String object
member of the Object type that is an instance of the standard built-in String constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a String value as an
argument. The resulting object has an internal slot whose value is the String value. A String object can be coerced to a
String value by calling the String constructor as a function (21.1.1.1).

4.3.20
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.

4.3.21

Number type

set of al | possi bl e Number -aBLbmberon¢Nabl)ngathbhe, spe

negative infinity

4.3.22
Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a Number value
as an argument. The resulting object has an internal slot whose value is the Number value. A Number object can be
coerced to a Number value by calling the Number constructor as a function (20.1.1.1).

4.3.23
Infinity
number value that is the positive infinite Number value

4.3.24
NaN
number value thatisanl EEE 7 5aNuinNooetr 06 v al ue

4.3.25
Symbol value
primitive value that represents a unique, non-String Object property key.

4.3.26
Symbol type
set of all possible Symbol values

4.3.27
Symbol object
member of the Object type that is an instance of the standard built-in Symbol constructor

4.3.28
function
member of the Object type that may be invoked as a subroutine

NOTE In addition to its properties, a function contains executable code and state that determine how it behaves when
invoked. A functionds code may or may not be written in EC

© Ecma International 2009 i All rights reserved

secma

4.3.29
built -in function
built-in object that is a function

NOTE Examples of built-in functions include parselnt and Math.exp . An implementation may provide
implementation-dependent built-in functions that are not described in this specification.

4.3.30

property
association between a key and a value that is a part of an object. The key be either a String value or a
Symbol value.

NOTE Depending upon the form of the property the value may be represented either directly as a data value (a
primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

4.3.31
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.32
built -in method
method that is a built-in function

NOTE Standard built-in methods are defined in this specification, and an ECMAScript implementation may specify
and provide other additional built-in methods.

4.3.33

attribute

internal value that defines some characteristic of a property
4.3.34

own property

property that is directly contained by its object

4.3.35

inherited property

property of an object that is not an own property butisa property (either own
prototype

4.4 Organization of This Specification

The remainder of this specification is organized as follows:

Clause 5 defines the notational conventions used throughout the specification.

Clauses 6-9 define the execution environment within which ECMAScript programs operate.

Clauses 109.5.15-16 define the actual ECMAScript programming language includings its syntactic encoding
and the execution semantics of all language features.

Clauses 17-26 define the ECMAScript standard library. It includes the definitions of all of the standard objects
that are available for use by ECMAScript programs as they execute.

8 © Ecma International 2013

or

nh

~ecnd

5 Notational Conventions
5.1 Syntactic and Lexical Grammars
5.1.1 Context -Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a
nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its
right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along with
zero or more terminal symbols.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand
side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 11. This grammar has as its terminal symbols characters
(Unicode code units) that conform to the rules for SourceCharactedefined in clause 10.1. It defines a set of
productions, starting from the goal symbol InputElementDivor InputElementRegExpthat describe how
sequences of such characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for
ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and
punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens,

also become part of the stream of input elements and guide the process of automatic semicolon insertion
(11.9). Simple white space and single-line comments are discarded and do not appear in the stream of input
elements for the syntactic grammar. A MultiLineCommen{ t hat i s, a confmée*hd rod g & rhekl
of whether it spans more than one line) is likewise simply discarded if it contains no line terminator; but if a
MultiLineCommentontains one or more line terminators, then it is replaced by a single line terminator, which
becomes part of the stream of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 21.2.1. This grammar also has as its terminal symbols the
characters as defined by SourceCharactent defines a set of productions, starting from the goal symbol Pattern
that describe how sequences of characters are translated into regular expression patterns.

Productions of the | exical and RegExp grammamss s@pear e
punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the
lexical grammar having to do with numeric literals and has as its terminal symbols SourceCharacterThis
grammar appears in 7.1.3.1.

Productions of the numeric string grammar are distinguished by havingt hr ee c:0l asspfinctuati
5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting

from the goal symbol Script, that describe how sequences of tokens can form syntactically correct independent

components of an ECMAScript programs.

When a stream of characters is to be parsed as an ECMAScript script, it is first converted to a stream of input
elements by repeated application of the lexical grammar; this stream of input elements is then parsed by a

© Ecma International 2009 i All rights reserved

»eCmna

single application of the syntactic grammar. The script is syntactically in error if the tokens in the stream of
input elements cannot be parsed as a single instance of the goal nonterminal Script with no tokens left over.

Productions of the syntactic grammar are distinguished by havingj ust on@ ael pondtuat.

The syntactic grammar as presented in clauses 12, 13, 14 and 15 is actually not a complete account of which
token sequences are accepted as correct ECMAScript scripts. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences
that are described by the grammar are not considered acceptable if a terminator character appears in certain
Afawkwardo pl aces.

In certain cases in order to avoid ambiguities the syntactic grammar uses generalised productions that permit
token sequences that are not valid ECMAScript scripts. For example, this technique is used in with object
literals and object destructuring patterns. In such cases a more restrictive supplemental grammar is provided
that further restricts the acceptable token sequences. In certain contexts, when explicitly specific, the input
elements corresponding to such a production are parsed again using a goal symbol of a supplemental
grammar. The script is syntactically in error if the tokens in the stream of input elements cannot be parsed as
a single instance of the supplemental goal symbol, with no tokens left over.

5.1.5 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric string grammars, and some of the terminal symbols of
the other grammars, are shown in fixed width font, both in the productions of the grammars and
throughout this specification whenever the text directly refers to such a terminal symbol. These are to appear
in a script either exactly as written or using equalvant Unicode escape sequences (see 10.19.5.15). All
terminal symbol characters specified in this way are to be understood as the appropriate Unicode code points
from the Basic Latin range, as opposed to any similar-looking characters from other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal (al so cal | ed isa

introduced by the name of the nonterminal being defined followed by one or more colons. (The number of
colons indicates to which grammar the production belongs.) One or more alternative right-hand sides for the
nonterminal then follow on succeeding lines. For example, the syntactic definition:

WhileStatement
while (Expression Statement

states that the nonterminal WhileSatementrepresents the token while , followed by a left parenthesis token,
followed by an Expressionfollowed by a right parenthesis token, followed by a StatementThe occurrences of
Expressiorand Statemenare themselves nonterminals. As another example, the syntactic definition:

ArgumentList
AssignmentExpression
ArgumentList, AssignmentExpression

states that an ArgumentListmay represent either a single AssignmentExpressiamr an ArgumentListfollowed by
a comma, followed by an AssignmentExpressioithis definition of ArgumentLisis recursive, that is, it is defined
in terms of itself. The result is that an ArgumentListmay contain any positive number of arguments, separated
by commas, where each argument expression is an AssignmentExpressiorSuch recursive definitions of
nonterminals are common.

The subscr iyot,edwhs wfhf imkayi appear after a terminal

The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the
optional element and one that includes it. This means that:

10 © Ecma International 2013

fiprod

or

nont

VariableDeclaration
Bindingdentifier Initialiser,p
is a convenient abbreviation for:
VariableDeclaration
Bindinddentifier
Bindinddentifier Initialiser

and that:

IterationStaterant:
for (LexicalDeclaration ; Expressiog, ; Expressiop,) Statement

is a convenient abbreviation for:
IterationStatement
for (LexicalDeclaration ; ; Expressiog,) Statement

for (LexicalDeclaration ; Expression; Expressiop,) Statement

which in turn is an abbreviation for:

IterationStatement
for (LexicalDeclaration ; ;) Statement
for (LexicalDeclaration; ; Expressior) Statement

for (LexicalDeclaration; Expression; ;) Statement
for (LexicalDeclaration; Expression; Expressior) Statement

S0, in this example, the nonterminal IterationStatemenactually has four alternative right-hand sides.

A production may be parameterised by a subscripted annotation of the form fjyarametersO whi ch may a
a suffix to the nonterminal symbol defined by the production. faametersO Mmay be either a single name or a
comma separated list of names. A parameterised production is a shorthand for a set of productions defining

all combinations of the parameter names appended to the parameterised nonterminal symbol. This means

that:

StatementLigtewr :
ReturnStatement
ExpressionStatement

is a convenient abbreviation for:
StatementList
ReturnStatement
ExpressionStatement
StatementListReturn
ReturnStatement
ExpressionStatement
and that:

StatementLigtewrm m :
ReturnStatement
ExpressionStatement

is abbreviation for:

© Ecma International 2009 i All rights reserved

11

secma

StatementList
ReturnStatement
ExpressionStatement

StatementListReturn
ReturnStatement
ExpressionStatement

StatementListin
ReturnSatement
ExpressionStatement
StatementListReturnin
ReturnStatement
ExpressionStatement
References to nonterminals on the right hand side of a production can also be parameterised. For example:
StatementList
ReturnStatement
ExpressionStatemegpt
is equivalent to saying:
StatementList
ReturnStatement
ExpressionStatementin
A nonterminal reference may have both a parameter list and an f,x0 s u Fof exaxple:

VariableDeclaration
Bindingdentifier Initialisefinopt

is an abbreviation for:
VariableDeclaration
Bindingdentifier
Bindingdentifier Initialisedn
Prefixing a parameter name with fdn a right hand side nonterminal reference makes that parameter value
dependent upon the occurrence of the parameter name on the reference to the current production& left hand
side symbol. For example:

VariableDeclaratiofy; :
Bindingdentifier Initialisely;

is an abbreviation for:

VariableDeclaration:
Bindinddentifier Initialiser

VariableDeclarationn :
Bindinddentifier Initialisern

If a right hand side alternative is prefixed with fj+parameter]0 that alternative is only available if the named
parameter was used in referencing the productionds nont

12 © Ecma International 2013

~ecnd

prefixed with fi~parameter]Othat alternative is only available if the named parameter was not used in referencing
the producti onds Thiesmeansthatni n al symbol

StatementLigtew :
[+Returi ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList
ExpressionStatement

StatementListReturn
ReturnStatement
ExpressionStatement

and that

StatementLigtewr :
[~Returj ReturnStatement
ExpressionStatement

is an abbreviation for:
StatementList
ReturnStatement

ExpressionStatement

StatementListReturn
ExpressionStatement

When theonwofodd ofil ow the col on(s) in a grammar defin
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for
ECMAScript contains the production:

NonZeroDigit:: one of
123456789

which is merely a convenient abbreviation for:

NonZeroDigit::

OCoO~NOUITRAWNPEF

I f the [epplyld aappdar s -hand siddaf a pradugtion, it indicates that the production's right-
hand side contains no terminals or nonterminals.

| f t he [lopkéheadd S0 fia p p e ar s -hamd silehoka produgtibrt, it indicates that the production
may not be used if the immediately following input token is a member of the given set The setcan be written
as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a nonterminal,
in which case it represents the set of all terminals to which that nonterminal could expand. For example, given
the definitions

© Ecma International 2009 i All rights reserved

13

secma

DecimalDigit:: one of
0123456789

DecimalDigits::
DecimalDigt
DecimalDigits DecimalDigit

the definition

LookaheadExample
N [lookahead 1 {1, 3,5, 7, 9}] DecimalDigits
DecimalDigit [lookahead T DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit
not followed by another decimal digit.

| f t he [npLinemeanisa@merfild0 a p p e ar s -haml sidetofea produgidntof the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminatoroccurs in the
input stream at the indicated position. For example, the production:

ThrowStatement
throw [no LineTerminatothere] EXpression

indicates that the production may not be used if a LineTerminatoroccurs in the script between the throw token
and the Expression

Unless the presence of a LineTerminatoris forbidden by a restricted production, any number of occurrences of
LineTerminatormay appear between any two consecutive tokens in the stream of input elements without
affecting the syntactic acceptability of the script.

The lexical grammar has multiple goal symbols and the appropriate goal symbol to use depends upon the

syntactic grammar cont ext . | f @ exicpl bodl l@xBaBSoalSyrhbolld hap f eoarrns ftbamd-t he r i
side of a syntactic production then the next token must be lexically recognised using the indicated goal symbol.

In the absence of such a phrase the default lexical goal symbol is used.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multi-character token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
fboutnoto and then indicating the expansions to be excluded.

Identifier ::
IdentifierNamebut not ReservedWord

means that the nonterminal ldertifier may be replaced by any sequence of characters that could replace
IdentifierNameprovided that the same sequence of characters could not replace ReservedWord

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it
would be impractical to list all the alternatives:

SourceCharacter.
any Unicode code point

14 © Ecma International 2013

~ecnd

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended
to imply the use of any specific implementation technique. In practice, there may be more efficient algorithms
available to implement a given feature.

Algorithms may be explicitly parameterised, in which case the names and usage of the parameters must be
provided as part of the algorithm& definition. In order to facilitate their use in multiple parts of this specification,
some algorithms, called abstract operations, are named and written in parameterised functional form so that
they may be referenced by name from within other algorithms.

Algorithms may be associated with productions of one of the ECMAScript grammars. A production that has
multiple alternative definitions will typically have a distinct algorithm for each alternative. When an algorithm is
associated with a grammar production, it may reference the terminal and nonterminal symbols of the
production alternative as if they were parameters of the algorithm. When used in this manner, nonterminal
symbols refer to the actual alternative definition that is matched when parsing the script souce code.

When an algorithm is associated with a production alternative, the alternative is typically shown without any
fi [grdmmar annotations. Such annotations should only affect the syntactic recognition of the alternative and
have no effect on the associated semantics for the alternative.

Unless explicitly specified otherwise, all chain productions have an implicit associated definition for every
algorithm thatismi ght be appl i ed t-bandshideanontepminal.dThe impliat defirstionl simpblyt
reapplies the same algorithm name with the same paramet er s, i f any, t csoletrighe ¢ h ¢
hand side nonterminal and then result. For example, assume there is a production

Block:
{ StatementList

but there is no evalutionalgorithm that is explicitly specified for that production. If in some algorithm there is a
statement of the form: fReturn the result of evaluatinglockd i t is implicit t dvalutiont h e
algorithm of the form:

Runtime Semantics: Evaluation

Block : { StatementLis}

1. Returnthe result of evaluatin§tatementList
For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify substeps with the first level of substeps labelled with lower case alphabetic characters and the second
level of substeps labelled with lower case roman numerals. If more than three levels are required these rules
repeat with the fourth level using numeric labels. For example:

1. Top-levelstep

a. Substep

b. Substep.
i Subsubstep.
ii. Subsubstep.

1. Subsubsubstep
a. Subsubsubsubstep

i. Subsubsubsubsubstep
A step or substep may be written as an dAifo predicat
are only applied if the predicate is true. If a step or substep beginswi t h t he word dfAel sed, i

the negation of the preceding Aifo predicate step at

© Ecma International 2009 i All rights reserved

15

secma

A step may specify the iterative application of its substeps.

A step may assert an invariant condition of its algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic
requirements and hence need not be checked by an implementation. They are used simply to clarify
algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this clause should always be understood as computing exact mathematical results
on mathematical real numbers, which do not include infinities and do not include a negative zero that is
distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit
steps, where necessary, to handle infinities and signed zero and to perform rounding. If a mathematical
operation or function is applied to a floating-point number, it should be understood as being applied to the
exact mathematical value represented by that floating-point number; such a floating-point humber must be
finite, and if it is +0 or - 0 then the corresponding mathematical value is simply O.

The mathematical function absk) produces the absolute value of x, which is - x if x is negative (less than zero)
and otherwise is x itself.

The mathematical function sign§) produces 1 if x is positive and - 1 if x is negative. The sign function is not
used in this standard for cases when x is zero.

The mathematical function min(xy, X, .., X,) produces the mathematically smallest of x; through x..

T he n o txmaodulayd y rfiust be finite and nonzero) computes a value k of the same sign as y (or zero)
such that absk) < absy) andx- k=q?3 y for some integer g.

The mathematical function floor(x) produces the largest integer (closest to positive infinity) that is not larger
than x.

NOTE floor(x) =x- (x modulo 1)
5.3 Static Semantic Rules

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of
input elements make up a valid ECMAScript script that may be evaluated. In some situations additional rules
are needed that may be expressed using either ECMAScript algorithm conventions or prose requirements.
Such rules are always associated with a production of a grammar and are called the static semantics of the
production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic
Rules are associated with grammar productions and a production that has multiple alternative definitions will
typically have for each alternative a distinct algorithm for each applicable named static semantic rule.

Unless otherwise specified every grammar production alternative in this specification implicitly has a definition
for a static semantic rule named Containswhich takes an argument named symbolwhose value is a terminal or
nonterminal of the grammar that includes the associated production. The default definition of Containss:

1. For each terminal and narminal grammar symbokym in the definition of this production do
a. If symis the same grammar symbol s§anbo] returntrue.
b. If symis a nonterminalthen
i Let containedbe the result of Contains felymwith argumentsymbol
ii. If containedis true, returntrue.
2. Returnfalse

16 © Ecma International 2013

~ecnd

The above definition is explicitly over-ridden for specific productions.

A special kind of static semantic rule is an Early Error Rule. Early error rules define early error conditions (see
clause 16) that are associate with specific grammar productions. Evaluation of most early error rules are not
explicitly invoked within the algorithms of this specification. A comforming implementation must, prior to the
first evaluation of a Script validate all of the early error rules of the productions used to parse that Script If any
of the early error rules are violated the Scriptis invalid and cannot be evaluated.

6 ECMAScript Data Types and Values

Algorithms within this specification manipulate values each of which has an associated type. The possible
value types are exactly those defined in this clause. Types are further subclassified into ECMAScript language
types and specification types.

Within this speciTypeati snuseéteasthestypedkd ha ifgpedt orfie flier s t
ECMAScript language and specification types defined in this clause.

6.1 ECMAScript Language Types

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean,
String, Symbol, Number, and Object. An ECMAScript language value is a value that is characterized by an
ECMAScript language type.

6.1.1 The Undefined Type

The Undefined type has exactly one value, called undefined . Any variable that has not been assigned a value
has the value undefined .

6.1.2 The Null Type

The Null type has exactly one value, called null .

6.1.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.
6.1.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(Ael ement so) . Th eallySused io regresentytgxteial data in g mitmieg ECMAScript program, in
which case each element in the String is treated as a UTF-16 code unit value. Each element is regarded as
occupying a position within the sequence. These positions are indexed with nonnegative integers. The first
element (if any) is at index 0, the next element (if any) at index 1, and so on. The length of a String is the
number of elements (i.e., 16-bit values) within it. The empty String has length zero and therefore contains no
elements.

Where ECMAScript operations interpret String values, each element is interpreted as a single UTF-16 code
unit. However, ECMAScript does not place any restrictions or requirements on the sequence of code units in a
String value, so they may be ill-formed when interpreted as UTF-16 code unit sequences. Operations that do
not interpret String contents treat them as sequences of undifferentiated 16-bit unsigned integers. No
operations ensure that Strings are in a normalized form. Only operations that are explicitly specified to be
language or locale sensitive produce language-sensitive results

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-performing as
possible. If ECMAScript source code is in Normalised Form C, string literals are guaranteed to also be normalised, as long
as they do not contain any Unicode escape sequences.

© Ecma International 2009 i All rights reserved

17

secma

Some operations interpret String contents as UTF-16 encoded Unicode code points. In that case the
interpretation is:

1 A code unit in the range 0to OxD7FFor in the range OXEOOOto OxFFFFis interpreted as a code point
with the same value.

1 A sequence of two code units, where the first code unit clis in the range 0xD800to OxDBFF and the
second code unit c2is in the range 0OXxDCOO0to OXDFFF, is a surrogate pair and is interpreted as a code
point with the value (c1 - 0xD80Q x 0x400+ (c2i 0xDCO0Q + 0x10000

1 A code unit that is in the range 0xD800to OXDFFF, but is not part of a surrogate pair, is interpreted as
a code point with the same value.

6.1.5 The Symbol Type
The Symbol type is the set of all non-String values that may be used as the key of an Object property (6.1.7).
Each possible Symbol values is unique and immutable.

Symbol values have an associated internal attribute called [[Description]] whose immutable value is either
undefined or a String value.

6.1.5.1 Well-Known Symbols
Well-known symbols are built-in Symbol values that are explicitly referenced by algorithms of this specification.
They are typically used as the keys of properties whose values serve as extension points of a specification

algorithm. Unless otherwise specified, well-known symbols values are shared by all Code Realms (8.2).

Within this specification a well-known symbol is referred to by using a notation of the form @ @name, where
Afinameo is one of Tableke values | isted in

18 © Ecma International 2013

~ecnd

Table 18 Well-known Symbols

Specification Name [[Description]] Value and Purpose

@ @create "Symbol.create" A method used to allocate an object. Called
from the [[Construct]] internal method.

@ @haslnstance "Symbol.hasInstance” A method that determines if a constructor
object recognises an object as one of the
constructor 6s i nst ang

semantics of the instanceof operator.

A Boolean value that if true indicates that an
object should be flatten to its array elements
by Array.prototype.concat.

@@isConcatSpreadabl{ "Symbol. isConcatSpreadable

@ @isRegExp "Symbol. isRegExp " A Boolean value that if true indicates that an
object may be used as a regular expression.

A method that returns the default iterator for an
object. Called by the semantics of the for-of
statement.

@ @iterator "Symbol. iterator

@ @toPrimitive "Symbol. toPrimitive A method that converts an object to a
corresponding primitive value. Called by the

ToPrimitive abstract operation.

@ @toStringTag "Symbol. toStringTag " A string value that is used in the creation of the
default string description of an object. Called
by the built-in method
Object.prototype.toString.

@ @unscopables "Symbol. unscopables An Array of string values that are property
names that are excluded from the with
environment bindings of the associated

objects.

6.1.6 The Number Type

The Number type has exactly 1843773687445481062(that is, 2°* 2°*+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic,
except that the 900719925474099¢that is, 2°>-2) di st rafNatmb 8 N ot of thd IBEEE sStandard are
represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced by the
program expression NaN) In some implementations, external code might be able to detect a difference
between various Not-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code,
all NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity . For brevity, these values
are also referred to for expository purposes by the symbols +8 and - &, respectively. (Note that these two
infinite Number values are produced by the program expressions +Infinity (or simply Infinity) and -
Infinity J)

The other 1843773687445481062¢hat is, 2°* 2°% values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

Note that there is both a positive zero and a negative zero . For brevity, these values are also referred to for

expository purposes by the symbols +0 and - O, respectively. (Note that these two different zero Number
values are produced by the program expressions +0 (or simply 0) and - 0.)

The 184377368744548106%fhat is, 2°* 2°°- 2) finite nonzero values are of two kinds:

© Ecma International 2009 i All rights reserved

19

secma

1842872967520006963¢hat is, 2°*- 2°%) of them are normalised, having the form

s3ms3 2°

where sis +1 or - 1, mis a positive integer less than 2°® but not less than 2%, and e is an integer ranging from
- 1074to 971, inclusive.

The remaining 900719925474099(hat is, 2°°- 2) values are denormalised, having the form

s3 m3 2°

where sis +1 or - 1, mis a positive integer less than 2°2 and eis - 1074

Note that all the positive and negative integers whose magnitude is no greater than 2°3 are representable in
the Number type (indeed, the integer 0 has two representations, +0 and - 0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the two
forms shown above) is odd. Otherwise, it has an even significand.

I n this speci f ithedumbenvalue faoh ew hpalepresents anfeéxact nonzero real mathematical
quantity (which might even be an irrational number such as p) means a Number value chosen in the following
manner. Consider the set of all finite values of the Number type, with - 0 removed and with two additional
values added to it that are not representable in the Number type, namely 2'°%* (which is +13 233 2°'Y and
- 219 (which is - 13 2°23 2%, Choose the member of this set that is closest in value to x. If two values of the
set are equally close, then the one with an even significand is chosen; for this purpose, the two extra values
2194 and - 2'°%* are considered to have even significands. Finally, if 2'°%* was chosen, replace it with +a; if
- 292" was chosen, replace it with - & ; if +0 was chosen, replace it with - 0 if and only if x is less than zero; any
other chosen value is used unchanged. The result is the Number value for x. (This procedure corresponds
exactly to the behaviour of the | EEE 754 Around to neare

Some ECMAScript operators deal only with integers in the range - 2** through 2*- 1, inclusive, or in the range
0 through 2°% 1, inclusive. These operators accept any value of the Number type but first convert each such
value to one of 2*? integer values. See the descriptions of the ToInt32 and ToUint32 operators in 7.1.5 and
7.1.6, respectively.

6.1.7 The Object Type

An Obiject is logically a collection of properties. Each property is either a data property, or an accessor
property:

1 A data property associates a key value with an ECMAScript language value and a set of Boolean
attributes.

1 An accessor property associates a key value with one or two accessor functions, and a set of Boolean
attributes. The accessor functions are used to store or retrieve an ECMAScript language value that is
associated with the property.

Properties are identified using key values. A key value is either an ECMAScript String value or a Symbol
value. All String and Symbol values, including the empty string, are valid as property keys.

Property keys are used to access properties and their values. There are two kinds of access for properties:
get and set, corresponding to value retrieval and assignment, respectively. The properties accessible via get
and set access includes both own properties that are a direct part of an object and inherited properties which
are provided by another associated object via a property inheritance relationship. Inherited properties may be

20 © Ecma International 2013

~ecnd

either own or inherited properties of the associated object. Each own properties of an object must each have a
key value that is distinct from the key values of the other own properties of that object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in their
semantics for accessing and manipulating their properties. Ordinary objects are the most common form of
objects and have the default object semantics. An exotic object is any form of object whose property
semantics differ in any way from the default semantics.

6.1.7.1 Property Attributes

Attributes are used in this specification to define and explain the state of Object properties. A data property
associates a key value with the attributes listed in Table 2.

Table 2 § Attributes of a Data Property

Attribute Name

Value Domain

Description

[[Value]] Any ECMAScript The value retrieved by a get access of the property.
language type

[[Writable]] Boolean If false, attempts by ECMAScript code to change the
p r o p e[pValuelpadtribute using [[Set]] will not succeed.

[[Enumerable]] Boolean If true, the property will be enumerated by a for-in
enumeration (see 13.6.4). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the

property to be an accessor property, or change its
attributes (other than [[Value]], or changing [[Writable]] to
false) will fail.

An accessor property associates a key value with the attributes listed in Table 3.

Table 36 Attributes of a n Accessor Property

Attribute Name Value Domain Description
[[Get]] Object or If the value is an Object it must be a function Object. The
Undefined functionbs [[Ca ITdblg §)is caltet with ana
empty arguments list to retrieve the property value each
time a get access of the property is performed.

[[Set]] Object or If the value is an Object it must be a function Object. The

Undefined functionbs [[Ca ITdblg §)is calet with ana
arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property's [[Set]] internal method
may, but is not required to, have an effect on the value
returned by subsequent calls to the property's [[Get]]
internal method.

[[Enumerable]] Boolean If true, the property is to be enumerated by a for-in
enumeration (see 13.6.4). Otherwise, the property is said to
be non-enumerable.

[[Configurable]] | Boolean If false, attempts to delete the property, change the

property to be a data property, or change its attributes will
fail.

If the initial values of a p r o0 p eatttibytés @re not explicitly specified by this specification, the default value
defined in Table 4 is used.

© Ecma International 2009 i All rights reserved

21

secma

Table 4 & Default Attribute Values

Attribute Name Default Value
[[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

6.1.7.2 Object Internal Methods and Internal Slots

The actual semantics of objects, in ECMAScript, are specified via algorithms called internal methods. Each
object in an ECMAScript engine is associated with a set of internal methods that defines its runtime behaviour.
These internal methods are not part of the ECMAScript language. They are defined by this specification purely
for expository purposes. However, each object within an implementation of ECMAScript must behave as
specified by the internal methods associated with it. The exact manner in which this is accomplished is
determined by the implementation.

Internal method names are polymorphic. This means that different object values may perform different
algorithms when a common internal method name is invoked upon them. If, at runtime, the implementation of
an algorithm attempts to use an internal method of an object that the object does not support, a TypeError
exception is thrown.

Internal slots correspond to internal state that is associated with objects and used by various ECMAScript
specification algorithms. Internal slots are not object properties and they are not inherited. Depending upon
the specific internal slot specification, such state may consist of values of any ECMAScript language type or of
specific ECMA specification type values. Unless explicitly specified otherwise, internal slots are allocated as
part of the process of creating an object and may not be dynamically added to an object. Unless specified
otherwise, the initial value of an internal slot is the value undefined. Various algorithms within this specification
create objects that have internal slots. However, the ECMAScript language provides no direct way to
associate internal slots with an object.

Internal methods and internal slots are identified within this specification using names enclosed in double
square brackets [[]].

Table 5 summarises the essential internal methods used by this specification that are applicable to all objects
created or manipulated by ECMAScript code. Every object must have algorithms for all of the essential
internal methods. However, all objects do not necessarily use the same algorithms for those methods.

T h eSigratured ¢ o | urable 5 arfd other similar tables describes the invocation pattern for each internal

method. The invocation pattern always includes a parenthesised list of descriptive parameter names. If a

parameter name is the same as an ECMAScript type name then the name describes the required type of the

parameter value. If an internal method explicitly returns a value, its parameter list is followed by the symbol

iYO and nameof theygiuened value. The type names used in signatures refer to the types defined in
clause 6 augment ed by the foll camdbngneaddi ttihenalal memensay fibe ai
language type. An internal method implicitly returns a Completion Record as described in 6.2.2. In addition to

its parameters, an internal method always has access to the object upon which it is invoked as a method.

22 © Ecma International 2013

@ecna

Table 58 Essential Internal Methods

Internal Method

Signature

Description

[[GetPrototypeOf]]

(Y Object or Null

Determine the object that provides inherited properties
for this object. A null value indicates that there are no
inherited properties.

[[SetPrototypeOf]]

(Obiject or Null)Y Boolean

Associate with an object another object that provides
inherited properties. Passing null indicates that there
are no inherited properties. Returns true indicating
that the operation was completed successfully or
false indicating that the operation was not successful.

[[IsExtensible]]

()Y Boolean

Determine whether it is permitted to add additional
properties to an object.

[[PreventExtensions]]

()Y Boolean

Control whether new properties may be added to an
object. Returns true indicating that the operation was
completed successfully or false indicating that the
operation was not successful.

[[GetOwnProperty]]

(propertyKey) Y
Undefined or Property
Descriptor

Returns a Property Descriptor for the own property of
this object whose key is propertyKey, or undefined if
no such property exists.

[[HasProperty]]

(propertyKey) Y Boolean

Returns a Boolean value indicating whether the object
already has either an own or inherited property whose
key is propertyKey.

[[Get]]

(propertyKey, Receiver) Y any

Retrieve t he val ue of an obj e
propertyKey parameter. If any ECMAScript code must
be executed to retrieve the property value, Receiver is
used as the this value when evaluating the code.

[[Set]]

(propertyKey,value, Receiver)
Y Boolean

Try to set the value of
by propertyKey to value. If any ECMAScript code
must be executed to set the property value, Receiver
is used as the this value when evaluating the code.
Returns true indicating that the property value was set
or false indicating that it could not be set.

[[Delete]]

(propertyKey) Y Boolean

Removes the own property indentified by the
propertyKey parameter from the object. Return false if
the property was not deleted and is still present.
Return true if the property was deleted or was not
present.

[[DefineOwnProperty]]

(propertyKey,
PropertyDescriptor) Y
Boolean

Creates or alters the named own property to have the
state described by a Property Descriptor. Returns true
indicating that the property was successfully
created/updated or false indicating that the property
could not be created or updated.

[[Enumerate]]

(Y Object

Returns an iterator object over the string values of the
keys of the enumerable properties of the object.

[[OwnPropertyKeys]]

()Y Object

Returns an Iterator object that produces all of the own
property keys for the object.

Table 6 summarises additional essential internal methods that are supported by objects that may be called as

functions.

© Ecma International 2009 i All rights reserved

23

eCima

Table 6 & Additional Essential Internal Methods of Func tion Objects

Internal Method Signature Description
[[Call]] (any, a List of any) | Executes code associated with the object. Invoked via a
Y any function call expression. The arguments to the internal

method are a this value and a list containing the arguments
passed to the function by a call expression. Objects that
implement this internal method are callable.

[[Construct]] (a List of any) Y Creates an object. Invoked via the new operator. The
Object arguments to the internal method are the arguments passed
to the new operator. Objects that implement this internal
method are called constructors. A Function object is not
necessarily a constructor and such non-constructor Function
objects do not have a [[Construct]] internal method.

6.1.7.3 Invariants of the Essential Internal Methods

Current this section is just a bunch of material merged together from the ES5
spec. and from the wiki Proxy pages. It need to be completely reworked.

The intent is that it lists all invariants of the Essential Internal Methods. This
includes both invariants that are enforced for Proxy objects and other
invariants that may not be enfored.

Definitions:

The target of an internal method is the object the internal method is called upon.

A sealed property is a non-configurable own property of a target.

A frozen property is a hon-configurable non-writable own property of a target.

A new property is a property that does not exist on a non-extensible target.

Two Property Descriptors descland descZor a property key value are incompatible if:

1. Desclis produced by callinffGetOwnPropertyDescriptdkof targetwith key and

2. Calling [[DefineOwnProperty]] ofargetwith argument&eyanddesc2would throw aTypeErrorexception.

= =4 =4 =4 =9

Exotic objects may define additional constraints upon their [[Set]] internal method behaviour.

[[GetPrototypeOf]]

Every [[Prototype]] chain must have finite length (that is, starting from any object, recursively accessing the
[[Prototype]] internal slot must eventually lead to a null value).

getOwnPropertyDescriptor

Non-configurability invariant: cannot return incompatible descriptors for sealed propertiesO
Non-extensibility invariant: must return undefined for new properties
Invariant checks:

if trap returns undefined , check if the property is configurable

Qf property exists on target, check if the returned descriptor is compatible

24 © Ecma International 2013

~ecnd

if returned descriptor is non-configurable, check if the property exists on the target and is also non-

configurable

defineProperty

Non-configurability invariant: cannot succeed (return true) for incompatible changes to sealed propertiesO

Non-extensibility invariant: must reject (return false) for new properties
Invariant checks:

on success, if property exists on target, check if existing descriptor is compatible with argument

descriptor

on success, if argument descriptor is non-configurable, check if the property exists on the target and is

also non-configurable

getOwnPropertyNames
Non-configurability invariant: must report all sealed properties
Non-extensibility invariant: must not list new property namesO
Invariant checks:
check whether all sealed target properties are present in the trap result
If the target is non-extensible, check that no new properties are listed in the trap result
deleteProperty
Non-configurability invariant: cannot succeed (return true) for sealed properties
Invariant checks:
on success, check if the target property is configurable

getPrototypeOf

l nvariant check: check whether the targetbés
operator)

freeze | seal | preventExtensions
Invariant checks:

on success, check if isFrozen(target), isSealed(target) or lisExtensible(target)

isFrozen | isSealed | isExtensible

prototy

Invariant check: check whether the boolean trap result is equal to isFrozen(target), isSealed(target) or

isExtensible(target)
hasOwn

Non-configurability invariant: cannot return false for sealed properties
Non-extensibility invariant: must return false for new propertiesO
Invariant checks:

if false is returned, check if the target property is configurable

if false is returned, the property does not exist on target, and the target is non-extensible, throw a

TypeError

has

© Ecma International 2009 i All rights reserved

25

secma

Non-configurability invariant: cannot return false for sealed properties
Invariant checks:
if false is returned, check if the target property is configurable

get

Non-configurability invariant: cannot return inconsistent values for frozen data properties, and must return
undefined for sealed accessors with an undefined getterO

Invariant checks:

if property exi sts on target as a data property, check whet't
result are identical (according to the egal operator)

if property exists on target as an unadefines scheck whettemd t he
the trap result is also undefined .

set
Non-configurability invariant: cannot succeed (return true) for frozen data properties or sealed accessors

with an undefined setterO
Invariant checks:

on success, if property exists ontargetasadat a property, check whether the t
the update value are identical (according to the egal operator)

on success, i f property exists on target as an access
undefined

keys

Non-configurability invariant: must report all enumerable sealed properties
Non-extensibility invariant: must not list new property names
Invariant checks:

Check whether all enumerable sealed target properties are listed in the trap result

If the target is non-extensible, check that no new properties are listed in the trap result

enumerate

Non-configurability invariant: must report all enumerable sealed properties
Invariant checks:
Check whether all enumerable sealed target properties are listed in the trap result

Unless otherwise specified, the ECMAScript standard objects are ordinary objects and behave as described in
9.1 and 9.2. Some standard objects are exotic objects and have behaviour defined in 9.3 and 9.4.

Exotic objects may implement internal methods in any manner unless specified otherwise; for example, one
possibility is that [[Get]] and [[Set]] for a particular exotic object indeed fetch and store property values but
[[GetOwnProperty]] always generates undefined . However, if any specified use of an exotic object's internal
methods is not supported by an implementation, that usage must throw a TypeError exception when
attempted.

26 © Ecma International 2013

eCind

The [[GetOwnProperty]] internal method of all objects must conform to the following invariants for each
property of the object:

1

If a property is described as a data property and it may return different values over time, then either or
both of the [[Writable]] and [[Configurable]] attributes must be true even if no mechanism to change the
value is exposed via the other internal methods.

If a property is described as a data property and its [[Writable]] and [[Configurable]] are both false, then
the SameValue (according to 7.2.3) must be returned for the [[Value]] attribute of the property on all calls
to [[GetOwnProperty]].

If the attributes other than [[Writable]] may change over time or if the property might disappear, then the
[[Configurable]] attribute must be true.

If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true .
If the result of calling an o b j e dsEx®ensiblg]]internal method has been observed by ECMAScript code

to be false, then if a call to [[GetOwnProperty]] describes a property as non-existent all subsequent calls
must also describe that property as non-existent.

The [[DefineOwnProperty]] internal method of all objects must not permit the addition of a new property to an
object if the [[Extensible]] internal method of that object has been observed by ECMAScript code to be false.

If the result of calling the [[IsExtensible]] internal method of an object has been observed by ECMAScript code
to be false then it must not subsequently become true.

6.1.7.4 Well-Known Intrinsic Objects

Well-known intrinsics are built-in objects that are explicitly referenced by the algorithms of this specification
and which usually have Realm specific identities. Unless otherwise specified each intrinsic object actually
corresponds to a set of similar objects, one per Realm.

Within this specification a reference such as %name% means the intrinsic object, associated with the current
Realm, corresponding to the name. Determination of the current Realm and its intrinsics is described in 8.2.
The well-known intrinsics are listed in Table 7.

© Ecma International 2009 i All rights reserved

27

secma

Table 78 Well-known Intrinsic Objects

Intrinsic Name

ECMAScript Language Association

%O0bject% The initial value of the global object property named
"Object”
%ObjectPrototype% The initial value of the " prototype " data property of

the intrinsic %O0bject%.

%ODbjProto_toString%

The initial value of the "toString " data property of
the intrinsic %ObjectPrototype%.

%Function%

The initial value of the global object property named
" Function "

%FunctionPrototype%

The initial value of the " prototype " data property of
the intrinsic %6Function%.

%Array% The initial value of the global object property named
"Array ".
%ArrayPrototype% The initial value of the " prototype " data property of

the intrinsic %Array%.

%ArraylteratorPrototype%

The prototype object used for
Iterator objects created by the CreateArraylterator
abstract operation.

%String% The initial value of the global object property named
"String".
%StringPrototype% The initial value of the " prototype " data property of

the intrinsic %String%.

%StringlteratorPrototype%

The prototype object used for
Iterator objects created by the CreateStringlterator
abstract operation

%Boolean%

The initial value of the global object property named
"Boolean "

%BooleanPrototype%

The initial value of the " prototype " data property of
the intrinsic %Boolear?o.

%Number%

The initial value of the global object property named
"Number".

%NumberPrototype%

The initial value of the " prototype " data property of
the intrinsic %Number%.

%Date% The initial value of the global object property named
"Date ".

%DatePrototype% The initial value of the " prototype " data property of
the intrinsic %Date%.

%RegExXp% The initial value of the global object property named

"RegEXxp".

%RegExpPrototype%

The initial value of the " prototype " data property of
the intrinsic %RegExp%.

%Map% The initial value of the global object property named
"Map'.
%MapPrototype% The initial value of the " prototype " data property of

the intrinsic %Map%.

28

© Ecma International 2013

~eCna

%MaplteratorPrototype%

The prototype object used for
Iterator objects created by the CreateMaplterator
abstract operation

%WeakMap%

The initial value of the global object property named
" WeakMap .

%W eakMapPrototype%

The initial value of the " prototype " data property of
the intrinsic %WeakMap%.

%Set% The initial value of the global object property named
"Set".

%SetPrototype% The initial value of the " prototype " data property of
the intrinsic %Set%.

%W eakSet% The initial value of the global object property named

" WeakSet" .

%W eakSetPrototype%

The initial value of the " prototype " data property of
the intrinsic %WeakWeakSet%.

%SetlteratorPrototype%

The prototype object used for
Iterator objects created by the CreateSetlterator
abstract operation

%GeneratorFunction%

The initial value of the name "GeneratorFunction"
exported from the built-in module "std:iteration".

%Generator%

The initial value of the name "Generator" exported
from the built-in module "std:iteration"

%GeneratorPrototype%

The initial value of the prototype property of
the %Generator% intrinsic

%Error%

%EvalError%

%RangeError%

%ReferenceError%

%SyntaxError%

%TypeError%

%URIError%

%ErrorPrototype%

%EvalErrorPrototype%

%RangeErrorPrototype%

%ReferenceErrorPrototype%

%SyntaxErrorPrototype%

%TypeErrorPrototype%

%URIErrorPrototype%

%ArrayBuffer%

%ArrayBufferPrototype%

The initial value of the " prototype " data property of
the intrinsic %ArrayBuffer%.

%TypedArray%

%TypedArrayPrototype%

The initial value of the " prototype " data property of
the intrinsic %TypedArray%.

%Int8Array%o

%Int8ArrayPrototype%

%DataView%

© Ecma International 2009 i All rights reserved

29

secma

30

%DataViewPrototype%

%ThrowTypeError%

A function object that unconditionally throws a new
instance of %TypeError%.

???

© Ecma International 2013

»eCMma

6.2 ECMAScript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of
ECMAScript language constructs and ECMAScript language types. The specification types are Reference,
List, Completion, Property Descriptor, Lexical Environment, Environment Record, and Data Block.
Specification type values are specification artefacts that do not necessarily correspond to any specific entity
within an ECMAScript implementation. Specification type values may be used to describe intermediate results
of ECMAScript expression evaluation but such values cannot be stored as properties of objects or values of
ECMAScript language variables.

6.2.1 The List and Record Specification Type

The List type is used to explain the evaluation of argument lists (see 12.2.6) in new expressions, in function
calls, and in other algorithms where a simple ordered list of values is needed. Values of the List type are
simply ordered sequences of list elements containing the individual values. These sequences may be of any
length. The elements of a list may be randomly accessed using 0-origin indices. For notational convience an
array-like syntax can be used to access List elements. For example, arguments[2] is shorthand for saying the
3™ element of the List arguments.

The Record type is used to describe data aggregations within the algorithms of this specification. A Record
type value consists of one or more named fields. The value of each field is either an ECMAScript value or an
abstract value represented by a name associated with the Record type. Field hames are always enclosed in
double brackets, for example [[value]]

For notational convenience within this specification, an object literal-like syntax can be used to express a
Record value. For example, {[[field1]]: 42, [[field2]]: false, [[field3]]: empty } defines a Record value that has
three fields each of which is initialised to a specific value. Field name order is not significant. Any fields that
are not explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value. For
example, if R is the record shown in the previous paragraph then R.[[field2]] is shorthand forfit he fR el d
named [[field2]] © .

Schema for commonly used Record field combinations may be named, and that name may be used as a
prefix to a literal Record value to identify the specific kind of aggregations that is being described. For
example: PropertyDescriptor{[[Value]]: 42, [[Writable]]: false, [[Configurable]]: true }.

6.2.2 The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation of values and control flow such as
the behaviour of statements (break , continue , return and throw) that perform nonlocal transfers of
control.

Values of the Completion type are Record values whole fields are defined as by Table 8.

Table 8 8 Completion Record Fields

Field Name | Value Meaning
[[typel] One of normal , break, continue , return, | The type of completion that occurred.
or throw
[[value]] any ECMAScript language value or empty | The value that was produced.
[[target]] any ECMAScript string or empty The target label for directed control transfers.

The term fAabrupt compl et i onftype]]@due otherthamnoranaly compl et i o1

© Ecma International 2009 i All rights reserved

31

secma

6.2.2.1 NormalCompletion

The abstract operation NormalCompletionwith a single argument such as:

1. ReturnNormalCompletiongrgumeny.

Is a shorthand that is defined as follows:

1. ReturnCompletion{[[type]]: normal, [[value]]: argument [[target]]:empty}.

6.2.2.2 Implicit Completion Values

The algorithms of this specification often implicitly return Completion Records whose [[type]] is normal .

Unless it is otherwise obvious from the context, an algorithm statement that returns a value that is not a
Completion Record, such as:

Return”Infini ty"

Generally means the same thing as:

1. ReturnNormalCompletion{Infinity").

Ardiub st atement without a value in an algorithm step mea
1. ReturnNormalCompletiongndefined).

Similarly, any reference to a Completion Record value that is in a context that does not explicitly require a
complete Completion Record value is equivalent to an explicit reference to the [[value]] field of the Completion
Record value unless the Completion Record is an abrupt completion.

6.2.2.3 Throw an Exception

Algorithms steps that say to throw an exception, such as

1. Throw aTypeError exception

Mean the same things as:

1. ReturnCompletion{[type]]: throw, [[value]]: a newly createdypeError object, [[target]lempty}.

6.2.2.4 ReturnlfAbrupt

Algorithms steps that say

1. ReturnlfAbrupt@rgumeny.

mean the same things as:

1. If argumentis an abrupt completion, then retuangument
2. Else ifargumentis a Completion Record, then latgumentbe argument|[value]].

6.2.3 The Reference Specification Type
NOTE The Reference type is used to explain the behaviour of such operators as delete , typeof , the assignment

operators, the super keyword and other language features. For example, the left-hand operand of an assignment is
expected to produce a reference.

32 © Ecma International 2013

~ecnd

A Reference is a resolved name or property binding. A Reference consists of three components, the base
value, the referenced namand the Boolean valued strict referencdlag. The basevalue is either undefined , an
Object, a Boolean, a String, a Symbol, a Number, or an environment record (8.1.1). A basevalue of undefined
indicates that the Reference could not be resolved to a binding. The referenced namés a String or Symbol
value.

A Super Reference is a Reference that is used to represents a name binding that was expressed using the
super keyword. A Super Reference has an additional thisValuecomponent and its basevalue will never be an
environment record.

The following abstract operations are used in this specification to access the components of references:

GetBase(V). Returns the basevalue component of the reference V.

GetReferencedName(V). Returns the referenced nameomponent of the reference V.

IsStrictReference(V). Returns the strict referencdlag component of the reference V.

HasPrimitiveBase(V). Returns true if Type(bas§ is a Boolean, String, Symbol, or Number.
IsPropertyReference(V). Returns true if either the basevalue is an object or HasPrimitiveBase(V) is true;
otherwise returns false

IsUnresolvableReference(V). Returns true if the basevalue is undefined and false otherwise.
IsSuperReference(V). Returns true if this reference has a thisValuecomponent.

= =4 E]

The following abstract operations are used in this specification to operate on references:
6.2.3.1 GetValue (V)

ReturnIfAbrupt).
If Type(V) is not Reference, retuv.
Let basebe the result of calling GetBadg(
If IsUnresolvableReferenc¥], throw aReferenceError exception.
If IsPropertyReferenc#&f), then
a. If HasPrimitiveBaseY) is true, then
i Assert: In this caséyasewill never benull or undefined.
ii. Let base be ToObjectpase.
b. Return the result of callinthe [[Get]]internal methodf basepassingGetReferencedNam¥] and
GetThisValueY) as the arguments.
6. Elsebasemust be an environment record,
a. Return the result of calling the GetBindingValue (8e&.1) concrete method dfasepassing
GetReferencedNam¥) and IsStrictReferenc¥] as arguments.

okrwdE

NOTE The object that may be created in step 5.a.ii is not accessible outside of the above abstract operation and the
ordinary object [[Get]] internal method. An implementation might choose to avoid the actual creation of the object.

6.2.3.2 PutValue (V, W)

ReturnlfAbrupt{).
ReturnifAbruptiv).
If Type(V) is not Reference, throwReferenceError exception.
Let basebe the result of calling GetBad4(
If IsUnresolvableReferenc¥], then
a. If IsStrictReferencey) is true, then
i Throw ReferenceError exception.
b. LetglobalObjbe the result of the abstract operation GetGlobalObject.
c. Return the result of callinut(globalObjGetReferencedNam¥), W, false).
6. Else if IsPropertyReferencé), then
a. If HasPrimitiveBaseY) is true, then
i Assert: In this casdyasewill never benull or undefined.
ii. Setbase to ToObjectpass.
b. Letsucceededbe the result of callinghe [[Set]]internal methof basepassing
GetReferencedNam¥], W, andGetThisValueY) as arguments.

orwnPE

© Ecma International 2009 i All rights reserved

33

secma

c. ReturnlfAbruptéucceeded
d. If succeededs false andlsStrictReferenc@/) is true, then throw alypeError exception
e. Return.
7. Elsebasemust be a reference whoseskas an environment record. So,
a. Return the result of callinthe SetMutableBinding8(1.1) concrete method dfase passing
GetReferencedNam¥), W, and IsStrictReference] as arguments.
8. Return.

NOTE The object that may be created in step 6.a.ii is not accessible outside of the above algorithm and the ordinary
object [[Set]] internal method. An implementation might choose to avoid the actual creation of that object.

6.2.3.3 GetThisValue (V)

ReturnlfAbrupty).
If Type(V) is not Reference, retuv.
If IsUnresolvableReferencé), throw aReferenceError exception.
If IsSupeReferenceY), then
a. Return the value of ththisValuecomponent of the referenaé
5. Return GetBas&().

PN E

6.2.4 The Property Descriptor Specification Type

The Property Descriptor type is used to explain the manipulation and reification of Object property attributes.

Values of the Property Descriptor type are Recor ds composed of named fields wher
attribute name and its value is a corresponding attribute value as specified in 6.1.7.1. In addition, any field

may be present or absent. The schema name used within this specification to tag literal descriptions of
Property Descriptor records is fAPropertyDescriptoro.

Property Descriptor values may be further classified as data Property Descriptors and accessor Property
Descriptors based upon the existence or use of certain fields. A data Property Descriptor is one that includes
any fields named either [[Value]] or [[Writable]]. An accessor Property Descriptor is one that includes any
fields named either [[Get]] or [[Set]]. Any Property Descriptor may have fields named [[Enumerable]] and
[[Configurable]]. A Property Descriptor value may not be both a data Property Descriptor and an accessor
Property Descriptor; however, it may be neither. A generic Property Descriptor is a Property Descriptor value
that is neither a data Property Descriptor nor an accessor Property Descriptor. A fully populated Property
Descriptor is one that is either an accessor Property Descriptor or a data Property Descriptor and that has all
of the fields that correspond to the property attributes defined in either Table 2 or Table 3.

A Property Descriptor may be derived from an object that has properties that directly correspond to the fields
of a Property Descriptor. Such a derived Property Descriptor has an additional field named [[Origin]] whose
value is the object from which the Property Descriptor was derived.

The following abstract operations are used in this specification to operate upon Property Descriptor values:

6.2.4.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with Property Descriptor Desg the following steps
are taken:

1. If Descis undefined, then returrfalse.

2. If both Desc[[Get]] andDesc[[Set]] are absent, then retufiadse.
3. Returntrue.

34 © Ecma International 2013

~ecnd

6.2.4.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor is called with Property Descriptor Desg the following steps are
taken:

1. If Descis undefined, then returrfalse.
2. If both Desc[[Value]] andDesc[[Writable]] are absent, then retufalse.
3. Returntrue.

6.2.4.3 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with Property Descriptor Desg the following steps
are taken:

1. If Descis undefined, then returrfalse.
2. If IsAccessorDescriptoffesg and IsDataDescriptobes are bothfalse, then returrirue.
3. Returnfalse

6.2.4.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with Property Descriptor Desg the following
steps are taken:

1. If Descis undefined, then returrundefined.
2. If Deschas an [[Origin]] field then returrDesc[[Origin]] .
3. Letobjbe the result ofhe abstract operation ObjectCreatieh the intrinsic objecfoObjectPrototype% as
its argument
4. Assert:objis an extensible ordinary object with no own properties.
5. If Deschas a [[Value]] field then
a. Call OrdinaryDefineOwnPropertywith argumentbj, "value ", andPropertyDescriptof{Value]]:
Desc[[Value]], [[Writable]]: true, [[Enumerable]]:true, [[Configurable]]:true}
6. If Deschas a [[Writable]] field then
a. Call OrdinaryDefineOwnPropertywith argumentobj, "writable ", and
PropertyDescriptof{Value]]: Desc[[Writable]], [[Writable]]: true, [[Enumerable]]:true,
[[Configurable]]: true}l.
7. If Deschas a [[Get]] field then
a. Call OrdinaryDefineOwnPropertywith argumentobj, "get”, andPropertyDescriptof{Value]]:
Desc[[Gef]], [[Writable]]: true, [[Enumerable]]:true, [[Configurable]]:true}.
8. If Deschas a [[Set]] field then
a. Call OrdinarypefineOwnPropertwith argumentobj, "set ", andPropertyDescriptorffValue]]:
Desc[[Set]], [[Writable]]: true, [[Enumerable]]:itrue, [[Configurable]]:true}.
9. If Deschas & [[Enumerable]] field then
a. Call OrdinaryDefineOwnPropertyith argumentobj, "enumerable ", and
PropertyDescriptorf{Value]]: Desc[[Enumerable]], [[Writable]]:true, [[Enumerable]]:itrue,
[[Configurable]]: true}.
10. If Deschas a [[Configurable]] fieldthen
a. Call OrdinarybefineOwnPropertwith argumentbj, "configurable ", and
PropetyDescriptor{[Value]]: Desc[[Configurable]], [[Writable]]:true, [[Enumerable]]:true,
[[Configurable]]: true}.
11. Returnobij.

6.2.4.5 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

1. ReturnlfAbrupt©Obj).

2. If Type(Obj) is not Object throw dypeError exception.

3. Letdescbe the result of creating a new Property Descriptor that initially has no fields.
4. If the result ofHasPropertyDbj, "enumerable ") is true, then

© Ecma International 2009 i All rights reserved

35

secma

a. Letenumbe the reult of Ge{Obj, "enumerable ").
b. ReturnlfAbruptenun).
c. Set the [[Enumerable]] field adescto ToBooleanénun).
5. If the result ofHasPropertyQbj, "configurable ") is true, then
a. Letconf be the result of GéDbj, "configurable).
b. ReturnlfAbruptgonf).
c. Set the [[Configurable]] field oflescto ToBooleang¢on).
6. If the result ofHasPropertyQbj, "value ") is true, then
a. Letvaluebe the result of GéDbj, "value ").
b. ReturnlfAbruptgalue.
c. Set the [[Value]] field odescto value
7. |If the result ofHasPropertyQbj, "writable ") is true, then
a. Letwritable be the result of GéDbj, "writable).
b. ReturnlfAbruptvritable).
c. Set the [[Writable]] field ofdescto ToBooleanyritable).
8. If the result ofHasPropertyQbj, "get ") is true, then
a. Letgetterbe the result of GéDbj, "get ").
b. ReturnlfAbrupt@ettel).
c. If IsCallable@ette is false andgetteris notundefined, then throw arypeError exception.
d. Set the [[Get]] field ofdescto getter.
9. If the result ofHasPropertyQbj, "set ") is true, then
a. Letsetterbe the result of GéDbj, "set).
b. ReturnlfAbruptgette).
c. If IsCallableiette) is false andsetteris notundefined, then throw arypeError exception.
d. Set the [[Set]] field oflescto settet
10. If either desc[[Get]] or desc[[Set]] are present, then
a. If eitherdesc[[Value]] or desc[[Writable]] are present, then throwTypeError exception.
11. Set the [[Origin]] field ofdescto Ob;j.
12. Returndesc

6.2.4.6 CompleteProperty Descriptor (Desc, LikeDesc)

When the abstract operation CompletePropertyDescriptor is called with Property Descriptor Desg the following
steps are taken:

1. Assert:LikeDescis either a Property Descriptor andefined.
2. ReturnlfAbruptDesg.
3. Assert:Descis a Property Descriptor
4. |If LikeDescis undefined, then seLikeDescto Record{[[Value]]: undefined, [[Writable]]: false, [[Get]]:
undefined, [[Set]]: undefined, [[Enumerable]]:false, [[Configurable]]: false}.
5. If either IsGenericDescriptddesq or IsDataDescriptaiDesq is true, then
a. |If Descdoes not have a [[Value]] field, then deesc[[Value]] to LikeDesc[[Value]].
b. If Descdoes not have a [[Writable]] field, then daésc[[Writable]] to LikeDesc[[Writable]].
6. Else,
a. If Descdoes not have a [[Get]] field, then deésc[[Get]] to LikeDesc.[[Get]].
b. If Descdoes not have a [[Set]] field, then $2¢sc[[Set]] to LikeDesc[[Set]].
7. If Descdoes not haverg[[Enumerable]] field, then sddesc[[Enumerable]] toLikeDesc[[Enumerable]].
8. If Descdoes not have a [[Configurable]] field, then Betsc[[Configurable]] toLikeDesc[[Configurable]].
9. ReturnDesc
6.

2.5 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution
in nested functions and blocks. These types and the operations upon them are defined in 8.1.

36 © Ecma International 2013

~ecnd

6.2.6 Data Blocks

The Data Block specification type is used to describe a distinct and mutable sequence of byte-sized (8 bit)
numeric values. A Data Block value is created with a fixed number of bytes that each have the initial value 0.

For notational convenience within this specification, an array-like syntax can be used to express to the
individual bytes of a Data Block value. This notation presents a Data Block value as a 0-origined integer
indexed sequence of bytes. For example, if dbis a 5 byte Data Block value then dif2] can be used to express
access to its 3" byte.

The following abstract operations are used in this specification to operate upon Data Block values:

6.2.6.1 CreateByteDataBlock(size)

When the abstract operation CreateByteDataBlock is called with integer argument size the following steps are
taken:

1. Assert:sizéd 0 .

2. Letdbbe a new Data Block value consistingsafebytes If it is impossible to create such a Data Block, then throw

aRangeError exception.
3. Set all of the bytes afbto O.
4. Returndb.

6.2.6.2 CopyDataBlockByte s(toBlock, tolndex, fromBlock, fromindex, count)
When the abstract operation CopyDataBlockBytes is called the following steps are taken:

Assert:fromBlockandtoBlockaredistinctData Block values.
Assert:fromindextolndex andcountare positive integer values.
Let fromSizebe the number of bytes fromBlock
Assert:fromindex-countOfromSize
Let toSizebe the number of bytes tnBlock
Assert:tolndex-countOtoSize
Repeat, whileount0
a. SettoBlocKtolndex to the value ofromBlocKfromindey.
b. Incrementolndexandfromindexeach by 1.
c. Decrementountby 1.
8. ReturnNormalCompletionémpty).

NooprwdE

7 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here to solely to aid the
specification of the semantics of the ECMAScript language. Other, more specialized abstract operations are
defined throughout this specification.

7.1 Type Conversion and Testing

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the semantics
of certain constructs it is useful to define a set of conversion abstract operations. The conversion abstract
operations are polymorphic; they can accept a value of any ECMAScript language type or of a Completion
Record value. But no other specification types are used with these operations.

7.1.1 ToPrimitive

The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType The
abstract operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of

© Ecma International 2009 i All rights reserved

37

»eCmna

converting to more than one primitive type, it may use the optional hint PreferredTypeto favour that type.
Conversion occurs according to Table 9:

Table 98 ToPrimitive Conversions

Input Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToPrimitive(argument.[[value]]) also passing the optional hint
PreferredType.

Undefined Return argument (no conversion).

Null Return argument (no conversion).

Boolean Return argument (no conversion).

Number Return argument (no conversion).

String Return argument (no conversion).

Symbol Return argument (no conversion).

Object Perform the steps following this table.

When the InputType is Object, the following steps are taken:

If PreferredTypenvas not passed, l&int be"default ".
Else if PreferredTypéds hint Sring, lethint be"string .
ElsePreferredTypéds hint Number, letint be"number ".
Let exoticToPrim be the result of Géargument @ @toPrimitive).
ReturnifAbruptéxoticToPrin).
If exoticToPrimis notundefined, then
a. If IsCallablegxoticToPrin) is false, thenthrow aTypeError exception.
b. Letresultbe the result of calling the [[Call]] internal methode{oticToPrim with argumentas
thisArgumentand a list containinghint asargumentsList
c. ReturnlfAbrupt¢esulf).
d. If resultis an ECMAScript language wa¢ and Typegsult) is not Object, then returresult
e. Else, throw alypeError exception.
If hintis "default " then, lethint be"number".
8. Return the result of OrdinaryToPrimitive(@ument,hin}.

ok wNE

N

When the OrdinaryToPrimitive is called with arguments O and hint, the following steps are taken:

Assert: TypeQ) is Object
Assert: Typelint) is String and its value is eithéstring " or "number".
3. If hintis"string ", then
a. Let methodNamebethe List ("toString ", "valueOf ").
4. Else,
a. Let methodNamebe the Lt ("valueOf ", "toString ").
5. For eachnamein methodNamein List order, do
a. Let methodbe the result of GéD, nama@.
b. ReturnlfAbruptmethod.
c. IfIsCallablefnethod is true then,
i Let resultbe the result of calling the [[Call]] internal methodroéthod with O as
thisArgumentand an emptyist asargumentsList
ii. ReturnlfAbrupt¢esulf).
iii. If Type(resulf) is not Object, then retunresult
6. Throw aTypeError exception.

N

38 © Ecma International 2013

»eCMma

NOTE

When ToPrimitive is called with no hint, then it generally behaves as if the hint were Number.

However,

objects may over-ride this behaviour by defining a @@toPrimitive method. Of the objects defined in this specification only
Date objects (see 20.3) and Symbol objects (see 19.4.3.4) over-ride the default ToPrimitive behaviour. Date objects treat
no hint as if the hint were String.

7.1.2 ToBoolean

The abstract operation ToBoolean converts its argument to a value of type Boolean according to Table 10:

Table 10 8 ToBoolean Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return the argument. Otherwise return
ToBoolean(argument.[[value]])

Undefined Return false

Null Return false

Boolean Return the input argument (no conversion).

Number Return false if the argument is +0, - 0, or NaN; otherwise return true.

String Return false if the argument is the empty String (its length is zero);
otherwise return true.

Symbol Return true

Object Return true

7.1.3 ToNumber

The abstract operation ToNumber converts its argument to a value of type Number according to Table 11:

Table 11 8 ToNumber Conversions

Argument Type

Result

Completion Record

If argument is an abrupt completion, return argument. Otherwise return
ToNumber(argument.[[value]])

Undefined Return NaN

Null Return +0

Boolean Return 1 if argument is true. Return +0 if argument is false.
Number Return argument (no conversion).

String See grammar and note below.

Symbol Return NaN

Object Apply the following steps:

1. LetprimValuebe ToPrimitiveargumenthint Number).
2. Return ToNumbegrimValue.

7.1.3.1 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String. If the grammar cannot interpret
the String as an expansion of StringNumericLiteralthen the result of ToONumber is NaN.

Syntax

StringNumericLiteral::
StrwhiteSpacg;

StrwhiteSpacg: StrNumericLiteral StrWhiteSpage

© Ecma International 2009 i All rights reserved

39

oecnd

StrWhiteSpace:
StrwhiteSpaceChar StrWhiteSpgee

StrWhiteSpaceChar:
WhiteSpace
LineTerminator

StrNumericLiterat::
StrDecimalLiteral
HexIntegerLiteral

StrDecimalLiteral:::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiterat:
Infinity
DecimalDigits. DecimalDigits, ExponentPag,
. DecimalDigits ExponentPay
DecimalDigits ExponentPay

DecimalDigits:::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit::: one of
0123456789

ExponentPart::
Exponentindicator Signedinteger

Exponentindicator:: one of
e E

Signedinteger::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit::: one of
0123456789 abcdefABCDEF

NOTE Some differences should be noted between the syntax of a StringNumericLiteraland a NumericLiteral (see
11.8.3):

1 A StringNumericLiteraimay be preceded and/or followed by white space and/or line terminators.

1 A StringNumericLiterathat is decimal may have any number of leading 0 digits.

1 A StringNumericLiterathat is decimal may be preceded by + or - to indicate its sign.

1 A StringNumericLiterathat is empty or contains only white space is converted to +0.

1 Infinity and T Infinity are recognised as a StringNumericLiteralbut not as a NumericLiteral

40 © Ecma International 2013

»eCMma

71311 Runti me Semanti cs: MV 6 s

The conversion of a String to a Number value is similar overall to the determination of the Number value for a
numeric literal (see 11.8.3), but some of the details are different, so the process for converting a String
numeric literal to a value of Number type is given here in full. This value is determined in two steps: first, a
mathematical value (MV) is derived from the String numeric literal; second, this mathematical value is rounded
as described below.

1 The MV of StringNumericLiterat:: [empty]is O.

1 The MV of StringNumericLiterat:: StrwhiteSpaces 0.

1 The MV of StringNunericLiteral :: StrwhiteSpagg: StrNumericLiteral StrwhiteSpacg: is the MV of
StrNumericLiteral no matter whether white space is present or not.

1 The MV of StrNumericLiteral::: StrDecimalLiteralis the MV of StrDecimalLiteral

1 The MV of StrNumericLiteal ::: HexIntegerLiteralis the MV of HexIntegerLiteral

1 The MV of StrDecimalLiteral::: StrUnsignedDecimallLiterdk the MV of StrUnsignedDecimalLiteral

1 The MV of StrDecimalLiteral::: + StrUnsignedDecimalLiterak the MV of StrUnsignedDecimalLiteral

1 The MV of StrDecimalLiteral ::: - StrUnsignedDecimallLiteralis the negative of the MV of
StrUnsignedDecimalLiteral(Note that if the MV of StrUnsignedDecimalLiterak O, the negative of this MV is
also 0. The rounding rule described below handles the conversion of this signless mathematical zero to a
floating-point +0 or - 0 as appropriate.)

The MV of StrUnsignedDecimalLiterat Infinity is 10'°°°(a value so large that it will round to +a).

1 The MV of StrUnsignedDecimalLiterat DecimalDigits is the MV of DecimalDigits

1 The MV of StrUnsignedDecimalLiterat DecimalDigits. DecimalDigitsis the MV of the first DecimalDigits
plus (the MV of the second DecimalDigitstimes 10 "), where n is the number of characters in the second
DecimalDigits

1 The MV of StrUnsignedDecimalLiterat DecimalDigits ExponentPartis the MV of DecimalDigitstimes 16,
whereeis the MV of ExponentPart

1 The MV of StrUnsignedDecimalLiterat DecimalDigits DecimalDigits ExponentParis (the MV of the first
DecimalDigitsplus (the MV of the seconbecimalDigitstimes 10™) times 16, wheren is the number of characters
in the secondecimalDigis andeis the MV of ExponentPart

1 The MV of StrUnsignedDecimalLiterat. DecimalDigitsis the MV of DecimalDigitstimes 10", wheren is the
number of characters DecimalDigits.

1 The MV of StrUnsignedDecimalLiterat. DecimalDigits ExponentPait the MV of DecimalDigitstimes 16",
wherenis the number of charactersecimalDigits ande is the MV of ExponentPart

1 The MV of StrUnsignedDecimalLiterat DecimalDigitsis the MV of DecimalDigits

1 The MV of StrUnsignedDecimalLiterat DecimalDigits ExponentPartis the MV of DecimalDigitstimes 16,
whereeis the MV of ExponentPart

1 The MV of DecimalDigits::: DecimalOgit is the MV of DecimalDigit

1 The MV of DecimalDigits::: DecimalDigitsDecimalDigitis (the MV of DecimalDigitstimes 10) plus the MV of
DecimalDigit

1 The MV of ExponentPart:: Exponentindicator Signedintegasrthe MV of Signedinteger

1 The MV of Signedinteger.: DecimalDigitsis the MV of DecimalDigits

1 The MV of Signedinteger:: + DecimalDigitsis the MV of DecimalDigits

1 The MV of Signedinteger:: - DecimalDigitsis the negative of the MV decimalDigits

1 The MV of DecimalDigit::: 0 or of HexDigit::: 0is 0.

1 The MV of DecimalDigit::: 1 or of HexDigit::: 1is 1.

1 The MV of DecimalDigit::: 2 or of HexDigit::: 2 is 2.

1 The MV of DecimalDigit::: 3 or of HexDigit::: 3 is 3.

1 The MV of DecimalDigit::: 4 or of HexDigit::: 4 is 4.

1 The MV of DecimalDigit::: 5 or of HexDigit::: 5is 5.

1 The MV of DecimalDigit::: 6 or of HexDigit::: 6 is 6.

1 The MV of DecimalDigit::: 7 or of HexDigit::: 7is 7.

1 The MV of DecimalDigit::: 8 or of HexDigit::: 8 is 8.

1 The MV of DecimalDigit::: 9 or of HexDigit ::: 9is 9.

© Ecma International 2009 i All rights reserved

41

secma

The MV of HexDigit::: a or of HexDigit::: Ais 10.
The MV of HexDigit::: b or of HexDigit::: Bis 11.
The MV of HexDigit::: ¢ or of HexDigit::: Cis 12.
The MV of HexDigit::: d or of HexDigit::: Dis 13.
The MV of HexDigit::: e or of HexDigit::: Eis 14.
The MV of HexDigit::: f or of HexDigit::: Fis 15.
The MV of HexIntegerLiterat:: Ox HexDigitis the MV of HexDigit
The MV of HexIntegerLiterat:: 0X HexDigitis the MV of HexDigit

The MV of HexIntegerLiteral::: HexIntegerLiteralHexDigit is (the MV of HexIntegerLiteraltimes 16) plus the
MV of HexDigit

=4 =4 =4 =4 -4 -4 - -4 -4

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in the
String nume-di,c ilni twehrialh icsasé -0.lDtherwise,the thended valad nwust bei tte
Number value for the MV (in the sense defined in 6.1.6), unless the literal includes a StrUnsignedDecimalLiteral
and the literal has more than 20 significant digits, in which case the Number value may be either the Number
value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit or the
Number value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit
and then incrementing the literal at the 20th digit position. A digit is significant if it is not part of an ExponentPart
and

1 itisnotO;or

1 there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPatrtto its right.

7.1.4 Tolnteger

The abstract operation Tolnteger converts its argument to an integral numeric value. This abstract operation
functions as follows:

Let numbe be the result of calling ToNumber on the input argument.
ReturnifAbruptfumbey.

If numberis NaN, return+0.

If numberis +0, - 0, +&, or - o, returnnumber

Return the result of computing sign{(mbe) 3 floor(absfiumbe}).

aokrowNE

7.1.5 Tolnt32: (Signed 32 Bit Integer)

The abstract operation Tolnt32 converts its argument to one of 2°2 integer values in the range - 2°! through
2°L 1, inclusive. This abstract operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.
ReturnfAbrupt(numbey.

If numberis NaN, +0, - 0, +&, or - &, return+0.

Let int be signflumbej 3 floor(absfiumbey)).

Let int32bit beint modulo 22,

If int32bit O 2%, returnint32bit- 2°2, otherwise returint32bit.

o~ wNE

NOTE Given the above definition of Tolnt32:

1 The Tolnt32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves that
value unchanged.

1 Tolnt32(ToUint32K)) is equal to ToInt32() for all values of x. (It is to preserve this latter property that +o and -©o are
mapped to +0.)

1 TolInt32 maps - 0 to +0.

42 © Ecma International 2013

~ecnd

7.1.6 ToUint32: (Unsigned 32 Bit Integer)

The abstract operation ToUint32 converts its argument to one of 2*?integer values in the range 0 through 2°* 1,
inclusive. This abstract operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.
ReturnlfAbruptumbeyj.

If numberis NaN, +0,-0, +a, or-g, return+0.

Letint be signfumbej 3 floor(absfiumbey)).

Let int32bit beint modulo 22,

Returnint32bit.

ookwnE

NOTE Given the above definition of ToUint32:

1 Step 6 is the only difference between ToUint32 and Tolnt32.

1 The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.

1 ToUint32(Tolnt32K)) is equal to ToUint32() for all values of x. (It is to preserve this latter property that +a and -a are
mapped to +0.)

1 ToUint32 maps - 0 to +0.

7.1.7 Tolnt16: (Signed 16 Bit Integer)

The abstract operation Tolnt16 converts its argument to one of 2'° integer values in the range - 32768through
32767 inclusive. This abstract operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.
ReturnifAbruptfumbey.

If numberis NaN, +0, - 0, +o, or - &, return+0.

Letint be signfumbej 3 floor(absfiumbe)).

Let int16bit beint modulo 2°.

If int16bit 02", returnint16bit - 2'°, otherwise returint16bit.

ok wdE

7.1.8 ToUintl6: (Unsigned 16 Bit Integer)

The abstract operation ToUint16 converts its argument to one of 2*° integer values in the range 0 through 2'°- 1,
inclusive. This abstract operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.
ReturnlfAbruptumbej.

If numberis NaN, +0,-0, +a, or- =, return+0.

Let int be signfumbe) 3 floor(absfiumbe}).

Let int16bit beint modulo 2°.

Returnint16bit.

ok wNE

NOTE Given the above definition of ToUint16:

1 The substitution of 2 for 2*2in step 5 is the only difference between ToUint32 and ToUint16.
1 ToUint16 maps -0 to +0.

7.1.9 TolInt8: (Signed 8 Bit Integer)

The abstract operation Tolnt8 converts its argument to one of 2° integer values in the range - 128through 127,
inclusive. This abstract operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.
ReturnlfAbruptumbey.
If numberis NaN, +0, - 0, +a, or- g, return+0.

Let int be signfumbej 3 floor(absfiumbey)).
Let int8bit beint modulo 2.

ok~ wNPE

© Ecma International 2009 i All rights reserved

43

6.

eCima

If int8bit O2, returnint8bit - 28, otherwise returimnt8bit.

7.1.10 ToUint 8: (Unsigned 8 Bit Integer)

The abstract operation ToUint8 converts its argument to one of 2 integer values in the range 0 through 255
inclusive. This abstract operation functions as follows:

ookrwNE

Let numberbe the result of calling ToNumber on the input argument.
ReturnlfAbruptumbeyj.

If numberis NaN, +0,-0, +a, or - o, return+0.

Let int be signumbej 3 floor(absfiumbe}).

Let int8bit beint modulo 2.

Returnint8bit.

7.1.11 ToUint8Clamp: (Unsigned 8 Bit Integer , Clamped)

The abstract operation ToUint8Clamp converts its argument to one of 2 integer values in the range 0 through
255 inclusive. This abstract operation functions as follows:

ONoORrwWNE

Let numberbe the result of calling ToNumber on the input angunt.
ReturnlfAbruptumbey.

If numberis NaN, return+0.

If numberO , feturn+0.

If number> 255, return255.

Let f be floor(numbej).

If f+0.5 Onumber then returrf+1.

Returnf.

NOTE Note that unlike the other integer conversion abstract operation, ToUnit8Clamp rounds rather than truncates
non-integer values.

7.1.12 ToString

The abstract operation ToString converts its argument to a value of type String according to Table 12:

Table 12 8 ToString Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToString(argument.[[value]])

Undefined "undefined"

Null “null”

Boolean If argument is true, then return "true"
If argument is false, then return "false"

Number See 7.1.12.1.

String Return argument (no conversion)

Symbol Throw a TypeError exception.

Object Apply the following steps:
1. LetprimValuebe ToPrimitiveargumenthint String).
2. Return ToString{rimValue.

7.1.12.1 TosString Applied to the Number Type

The abstract operation ToString converts a Number mto String format as follows:

44

© Ecma International 2013

~ecnd

If mis NaN, return the StringNaN" .

If mis +0 or - O, return the String0" .

If mis less than zero, return the String concatenation of the Striigand ToString{m).

If mis+ B return the StringInfinity"

Otherwise, len, k, ands be integers such that2 1, 167! ¢ s< 10, the Number value fos3 10" *is m, and

k is as small as possible. Note that the number of digits in the decimal representatios, tifiatsis not

divisible by 10, and that the least significant digitsa§ not necessarily uniquely determined by these

criteria.

6. If k¢ n¢ 21, return the Bing consisting of th& digits of the decimal representationofin order, with no
leading zeroes), followed hy-koc cur rences ®d6. the character 0

7. 1f0<n¢ 21, return the String consisting of the most significantigits of the decimal represetitan of s,
foll owed by addetolmladwedi B-ydidgis o the deamali repiesentation of

8. If-6<n¢oO, return the Stri ng006¢onfsildtoiwregd ddfydtah deétch amad
-noccurrences db, t hel kt bkadigits oftihg decimal representation of

9. Otherwise, ifk = 1, return the String consisting of the single digisof f ol | owed by ledwer c
foll owed bwybaopl mbnéacsagdmg tg whetben- 1 is positive or negative, followed by
the decimal representation of the integer absj (with no leading zeroes).

10. Return the String consisting of the most significant digit of the decimal representaspfolddwed by a

decimalpi nt 6. 6, f ol | olwlediitstofythe ddtimal representatmonspifalowed by the

| ower cas eebc h afrod dtoewe dé+d yorm mil wos sascscigpgrndd énrgl i pmsitiveh e t h ¢

or negative, followed by the decimedpresentation of the integer ats{) (with no leading zeroes).

ogkrwnNPRE

NOTE 1 The following observations may be useful as guidelines for implementations, but are not part of the normative
requirements of this Standard:

1 If xis any Number value other than - 0, then ToNumber(ToString(x)) is exactly the same Number value as x.
1 The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

NOTE 2 For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 5 be used as a guideline:

Otherwise, len, k, ands be integers such thke 1, 10°* ¢ s< 10, the Number value fas2 10"¥is m, andkis as small as
possible. If there amultiple possibilities fors, choose the value sffor whichs3 10™¥is closest in value tm If there are
two such possible values gfchoose the one that is even. Note kiatthe number of digits in the decimal representation of
sand thasis not divisible by 10.

NOTE 3 Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal
conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis,
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as
http://netlib.sandia.gov/fp/dtoa.c and as

http://netlib.sandia.gov/fp/g_fmt.c and may also be found at the various netlib mirror sites.

7.1.13 ToObject

The abstract operation ToObject converts its argument to a value of type Object according to Table 13:

© Ecma International 2009 i All rights reserved

45

»eCmna

Table 138 ToObject Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToObject(argument.[[value]])

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return a new Boolean object whose [[BooleanData]] internal slot is set to
the value of argument. See 19.3 for a description of Boolean objects.

Number Return a new Number object whose [[NumberData]] internal slot is set to
the value of argument. See 20.1 for a description of Number objects.

String Return a new String object whose [[StringData]] internal slot is set to the
value of argument. See 21.1 for a description of String objects.

Symbol Return a new Symbol object whose [[SymbolData]] internal slot is set to
the value of argument. See 19.4 for a description of Symbol objects.

Object Return argument (no conversion).

7.1.14 ToPropertyKey

The abstract operation ToPropertyKey converts its argumentto a value that can be used as a property key by
performing the following steps:

1. ReturnlfAbrupt@rgumeny.

2. If Type@rgumenyis Symbol, then
a. Returnargument

3. ReturnToString@rgumeny.

7.1.15 Tolength

The abstract operation ToLength converts its argumentto an integer suitable for use as the length of an array-
like object. It performs the following steps:

Let lenbe Tolntegerdrgumeny.
ReturnifAbrupt{en).

If len O+0, then return+0.
Returnmin(len, 2°3-1).

PwnNPE

7.2 < Testing and Comparison Operations
7.2.1 CheckObjectCoercible

The abstract operation CheckObjectCoercible throws an error if its argument is a value that cannot be
converted to an Object using ToObject. It is defined by Table 14:

46 © Ecma International 2013

7.2.2

eCma

Table 14 8 CheckObjectCoercible Results

Argument Type Result
Completion Record | If argument is an abrupt completion, return argument. Otherwise return
CheckObjectCoercible(argument.[[value]])
Undefined Throw a TypeError exception.
Null Throw a TypeError exception.
Boolean Return argument
Number Return argument
String Return argument
Symbol Return argument
Object Return argument
IsCallable

The abstract operation IsCallable determines if its argument which must be an ECMAScript language value or
a Completion Record, is a callable function Object according to Table 15:

Table 15 6 IsCallable Results

Argument Type Result

Completion Record | If argumentis an abrupt completion, return argument Otherwise return
IsCallable(argumenf[value]])

Undefined Return false.

Null Return false.

Boolean Return false.

Number Return false.

String Return false .

Symbol Return false.

Object][f Iargumenthas a [[Call]] internal method, then return true, otherwise return
alse.

7.2.3 SameValue (X, y)

The internal comparison abstract operation SameValue(x, y), where x and y are ECMAScript language values,
produces true or false. Such a comparison is performed as follows:

ogakwnpE

8.

9.

ReturnIfAbrupt).
ReturnIfAbruptg).
If Type(x) is different from Typef), returnfalse.
If Type(x) is Undefined, returirue.
If Type(x) is Null, returntrue.
If Type(x) is Number, then
a. If xis NaN andy is NaN, returntrue.
b. If xis +0 andy is -0, returnfalse.
c. If xis-0 andy is +0, returnfalse.
d. If xis the same Number value gsreturntrue.
e. Returnfalse
If Type(x) is String, then
a. If xandy are exactly the same sequenceofle unit§same length and sancede unitsn
correspondingositions)returntrue; otherwise, returrialse.
If Type(x) is Boolean then
a. If xandy are bothtrue or bothfalse, thenreturntrue; otherwise, returffialse.
If Type(x) is Symbol then
a. If xandy are boththe same Symbol valuéhenreturntrue; otherwise, returrfialse.

10. Returntrue if x andy arethe sameéObjectvalue Otherwise, returtialse.

© Ecma International 2009 i All rights reserved

47

secma

7.2.4 SameValue Zero(X, y)

The internal comparison abstract operation SameValueZero(x, y), where x and y are ECMAScript language
values, produces true or false. Such a comparison is performed as follows:

ReturnIfAbruptf).
ReturnIfAbruptf).
If Type(x) is different from Typef), returnfalse.
If Type(x) is Undefined, returirue.
If Type(x) is Null, returntrue.
If Type(x) is Number, then
a. If xis NaN andy is NaN, returntrue.
b. If xis +0 andy is -0, returntrue.
c. If xis-0 andy is +0, returntrue.
d. If xis the same Number value gsreturntrue.
e. Returnfalse
7. If Type(x) is String, then
a. If xandy are exactly the same sequenceodle unitgsame length rad samecode unitsn
corresponding positiongeturntrue; otherwise, returtialse.
8. If Type(x) is Booleanthen
a. If xandy are bothtrue or bothfalse, thenreturntrue; otherwise, returralse.
9. If Type(x) is Symbol then
a. If xandy are boththe sameSymbol valuethenreturntrue; otherwise, returrialse.
10. Returntrue if x andy arethe sameObjectvalue Otherwise, returtialse.

oankwnhE

NOTE SameValueZero differs from SameValue only in its treatment of +0 and -O0.
7.2.5 IsConstructor

The abstract operation IsConstructor determines if its argument which must be an ECMAScript language value
or a Completion Record, is a function object with a [[Construct]] internal method.

ReturnifAbrupt@rgument.

If Type(@argumeny is not Object, returfialse.

If argumenthas a [[Construct]] internal method, returoe.
Returnfalse

PwnNPE

7.2.6 IsPropertyKey

The abstract operation IsPropertyKey determines if its argument which must be an ECMAScript language
value or a Completion Record, is a value that may be used as a property key.

ReturnifAbrupt@rgument.

If Type(argumeny is String, returrtrue.
If Type(argumeny is Symbol returntrue.
Returnfalse

PwnNE

7.2.7 IsExtensible (O)

The abstract operation IsExtensibleis used to determine whether additional properties can be added to the
object that is O. A Boolean value is returned. This abstract operation performs the following steps:

1. Assert: TypeQ) is Object.
2. Return the result of calling tHglsExtensiblg] internal methodof O.

48 © Ecma International 2013

~ecnd

7.2.8 Abstract Relational Comparison

The comparison x <y, where x and y are values, produces true, false, or undefined (which indicates that at
least one operand is NaN). In addition to x and y the algorithm takes a Boolean flag named LeftFirst as a
parameter. The flag is used to control the order in which operations with potentially visible side-effects are
performed upon x and y. It is necessary because ECMAScript specifies left to right evaluation of expressions.
The default value of LeftFirstis true and indicates that the x parameter corresponds to an expression that
occurs to the left of theypar amet er 6 s c or r e s pleftFidstimfgse ,ehe peveeses is theocase
and operations must be performed upon y before x. Such a comparison is performed as follows:

1. ReturnlfAbrupt).
2. ReturnlfAbruptg).
3. If the LeftFirst flag istrue, then

a. Letpxbe the result of calling ToPrimitive(hint Number).

b. ReturnlfAbruptpx).

c. Letpybe the result of calling ToPrimitive(hint Number).

d. ReturnlfAbruptpy).

4. Else the order of evaluation needs to be reversed to preserve tafht evaluation

a. Letpybe the result of calling ToPrimitive(hint Number).

b. ReturnlfAbruptpy).

c. Letpxbe the result of calling ToPrimitive(hint Number).

d. ReturnlfAbruptpx).

5. If both pxandpyare Stringsthen

a. If pyis a prefix ofpx, returnfalse. (A String valuep is a prefix of String valug if g can be the
result of concatenating and some other String Note that any String is a prefix of itself, because
may be the empty String.)

b. If pxis a prefix ofpy, returntrue.

c. Letkbe the smallestonnegative integer such that the character at posktisithin pxis different
from the character at positidnwithin py. (There must be suchka for neither String is a prefix of
the other.)

d. Letmbe the integer that is the code unit value for tharabter at positiok within px.

e. Letn be the integer that is the code unit value for the character at pokiahin py.

f. If m<n, returntrue. Otherwise, returtialse.

a. Letnxbe the result of calling ToNumbgxX). Becausg@x andpy are primitive values evaluation
order is not important.

Let ny be the result of calling ToNumbexy)).

If nxis NaN, returnundefined.

If nyis NaN, returnundefined.

If nxandny are the same Number value, retdatse.

If nxis +0 andny is - O, returnfalse.

If nxis-0andnyis +0, returnfalse.

If nxis +a, returnfalse.

If nyis +a, returntrue.

If nyis-na, returnfalse.

If nxis-®a, returntrue.

If the mathematical value afxis less than the mathematical valuengfd note that these
mathematical values are both finite and not both @emiurntrue. Otherwise, returfialse.

—xT o ma@moooco

NOTE1 Step 5 differs from step 11 in the algorithm for the addition operator + (12.6.3) in using fandoinstead of fora

NOTE 2 The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There is no
attempt to use the more complex, semantically oriented definitions of character or string equality and collating order
defined in the Unicode specification. Therefore String values that are canonically equal according to the Unicode standard
could test as unequal. In effect this algorithm assumes that both Strings are already in normalised form. Also, note that for
strings containing supplementary characters, lexicographic ordering on sequences of UTF-16 code unit values differs from
that on sequences of code point values.

© Ecma International 2009 i All rights reserved

49

secma

7.2.9 Abstract Equality Compari son

The comparison x ==y, where x and y are values, produces true or false. Such a comparison is performed as
follows:

1. If Type(x) is the same as Typg(then
a. Returnthe result of performingtrict Equality Comparisonx ===y.

2. If xis null andy is undefined, returntrue.
3. If xis undefined andy is null, returntrue.
4. If Type(x) is Number and Typ#{ is String,

return the result of the comparisgr== ToNumbery).
5. If Type(x) is String and Typsf) is Number,

return the result of the comparison ToNum@grE=y.
6. If Type(x) is Boolean, return the result of the comparison ToNumderf y.
7. If Type(y) is Boolean, return the result of the comparigor= ToNumbery).
8. If Type(X) is either String or Number and Tyg®({s Object,

return the result of the compgaon x == ToPrimitivefy).
9. If Type(x) is Object and Typsj is either String or Number,

return the result of the comparison ToPrimitixe€=y.
10. Returnfalse

7.2.10 Strict Equality Comparison

The comparison x ===y, where x and y are values, produces true or false. Such a comparison is performed
as follows:

1. If Type(x) is different from Type(), returnfalse.

2. If Type(X) is Undefined, returtrue.

3. If Type(X) is Null, returntrue.

4. If Type(x) is Number, then

If X is NaN, returnfalse.
If yis NaN, returnfalse.
If xis the same Number value gsreturntrue.
If xis +0 andy is - O, returntrue.
If xis -0 andy is +0, returntrue.
f. Returnfalse
5. If Type(x) is String, then
a. Ifxandyare exactly the same sequence of characters (same length and same characters in
corresponding positionsyeturntrue.
b. Else returnfalse.
6. If Type(x) is Booleanthen
a. If xandy are bothtrue or bothfalse, returntrue.
b. Elseg returnfalse.
7. If xandy arethe samesymbol value, returrue.
8. If xandy arethe saméDbjectvalue, returrtrue.
9. Returnfalse

ToooTp

NOTE This algorithm differs from the SameValue Algorithm (7.2.3) in its treatment of signed zeroes and NaNs.

7.3 Operations on Objects

7.3.1 Get(O,P)

The abstract operation Getis used to retrieve the value of a specific property of an object. The operation is

called with arguments O and P where O is the object and P is the property key. This abstract operation
performs the following steps:

50 © Ecma International 2013

~ecnd

1. Assert:Type() is Object.
2. Assert: IsPropertyKeg) is true.
3. Return the result of calling the@jef] internal method oD passingP andO asthe arguments

7.3.2 Put (O, P, V, Throw)

The abstract operation Putis used to set the value of a specific property of an object. The operation is called
with arguments O, P, V, and Throw where O is the object, P is the property key, V is the new value for the
property and Throwis a Boolean flag. This abstract operation performs the following steps:

1. Assert: TypeD) is Object.

2. Assert: IsPropertyKeW) istrue.

3. Assert: TypeThrow) is Boolean.

4. Let succesde the result of calling the [[Set]] internal method@passingP, V, and O asthe arguments
5. ReturnlfAbruptéuccess

6. If successs falseandThrowis true, then throw arypeError exception.

7. Returnsuccess

7.

3.3 CreateDataProperty (O, P, V)

The abstract operation CreateDataProperig used to create a new own property of an object. The operation is
called with arguments O, P, and V where O is the object, P is the property key, and V is the value for the
property. This abstract operation performs the following steps:

1. Assert: TypeD) is Object.

2. Assert: IsPropertyKeW) istrue.

3. LetnewDesde thePropertyDescriptof{Value]]: V, [[Writable]]: true, [[Enumerable]]:true,
[[Configurable]]: true}.

4. Return the result of callinthe [[DefineOwnProperty]] internal method ©fpassing® andnewDesa@s
arguments.

NOTE This abstract operation creates a property whose attributes are set to the same defaults used for properties
created by the ECMAScript language assignment operator. Normally, the property will not already exist. If it does exist and
is not configurable or O is not extensible [[DefineOwnProperty]] will return false

7.3.4 CreateDataPropertyOrThrow (O, P, V)

The abstract operation CreateDataPropertyOrThrow used to create a new own property of an object. It throws
a TypeError exception if the requested property update cannot be performed. The operation is called with
arguments O, P, and V where O is the object, P is the property key, and V is the value for the property. This
abstract operation performs the following steps:

Assert: TypeQ) is Object.

Assert: IsPropertyKeW) is true.

Let succesdethe result ofCreateDataPropert§, P, V).
ReturnifAbruptéuccesk

If successs false, then throw arypeError exception.
Returnsuccess

ogakwnpE

NOTE This abstract operation creates a property whose attributes are set to the same defaults used for properties
created by the ECMAScript language assignment operator. Normally, the property will not already exist. If it does exist and
is not configurable or O is not extensible [[DefineOwnProperty]] will return false causing this operation to throw a
TypeError exception.

7.3.5 DefinePropertyOrThrow (O, P, desc)

The abstract operation DefinePropertyOrThrovis used to call the [[DefineOwnProperlty]] internal method of an
object in a manner that will throw a TypeError exception if the requested property update cannot be
performed. The operation is called with arguments O, P, and descwhere O is the object, P is the property key,
and descis the Property Descriptor for the property. This abstract operation perform, the following steps:

© Ecma International 2009 i All rights reserved

51

secma

1. Assert: TypeQ) is Object.

2. Assert: IsPropertyKeg) is true.

3. Let succesde the result of calling thgDefineOwnProperty]linternal method 0O passingP anddescas
arguments

4. ReturnifAbruptéuccesky

5. If successs false, then throw arypeError exception.

6. Returnsuccess

7.3.6 DeletePropertyOrThrow (O, P)

The abstract operation DeletePropertyOrThrow is used to remove a specific own property of an object. It
throws an exception if the property is not configurable. The operation is called with arguments O and P where
O is the object and P is the property key. This abstract operation performs the following steps:

1. Assert: TypeD) is Object.

2. Assert: IsPropertyKeW) istrue.

3. Let succesde the result of calling the [[Delete]] internal methoddmpassingP asthe argument.
4. ReturnifAbruptéuccesy

5. If successs false, then throw arypeError exception.

6. Returnsuccess

7.

3.7 HasProperty (O, P)

The abstract operation HasProperty is used to determine whether an object has a property with the specified
property key. The property may be either an own or inherited. A Boolean value is returned. The operation is
called with arguments O and P where O is the object and P is the property key. This abstract operation
performs the following steps:

1. Assert: TypeD) is Object.
2. Assert: IsPropertyKeW) istrue.
3. Returnthe result of calling the HasProperty]] internal method d with argumentP.

7.3.8 HasOwnProperty (O, P)

The abstract operation HasOwnProperty is used to determine whether an object has an own property with the
specified property key. A Boolean value is returned. The operation is called with arguments O and P where O
is the object and P is the property key. This abstract operation performs the following steps:

Assert: TypeQ) is Object.

Assert: IsPropertyKeW) is true.

Let descbhethe result of calling the (fetOwnPropert}} internal method ofD passingP asthe argument
ReturnifAbrupt@esg.

If descis undefined, returnfalse.

Returntrue.

oakr~wnpE

7.3.9 GetMethod (O, P)

The abstract operation GetMethodis used to get the value of a specific property of an object when the value of
the property is expected to be a function. The operation is called with arguments O and P where O is the
object, P is the property key. This abstract operation performs the following steps:

Assert: TypeQ) is Object.

Assert: IsPropertyKeW) is true.

Let funcbe the result of calling the [[Get]] internal method@passingP andO asthe arguments.
ReturnlfAbruptfunc).

If funcis undefined, then returrundefined.

oronE

52 © Ecma International 2013

~ecnd

6. If IsCallablefunc) is false, then throw al'ypeError exception.
7. Returnfunc

7.3.10 SetintegrityLevel (O, level)

The abstract operation SetintegrityLevelis used to fix the set of own properties of an object. This abstract
operation performs the following steps:

Assert: TypeQ) is Object.
Assert:levelis either"sealed " or "frozen
Let keysbe the result of calling thBOwnPropertKeyd] internal methodf O.
ReturnlfAbruptkeys.
Let pendingExceptiome undefined.
If levelis "sealed ", then
a. Repeafor each elemenk of keys
i. Letstatusbe the result oDefinePropert@rThrow(O, k, PropertyDescriptor{
[[Configurable]]: false}) .
ii. If statusis an abrupt completion, then
1. If pendingExceptioms undefined, then setpendingExceptiono status
7. Elselevelis "frozen ",
a. Repeafor each elemenk of keys
i. Letstatusbe the result of calling the [[GetOwnProperty]] internal metho® afith k.
ii. If stausis an abrupt completion, then
1. If pendingExceptioms undefined, then setpendingExceptioto status
ii. Else,
1. LetcurrentDescbe status|[value]].
2. If currentDesds notundefined, then
a. If IsAccessobescriptorCurrentDesg is true, then
i. LetdeschethePropertyDescriptor{[[Configurable]ltalse}.
b. Else,
i. LetdeschethePropertyDescriptor { [[Configurable]jfalse,
[[Writable]]: false}.
c. Letstatusbe the result obefinePropert@rThrow(O, k, desq.
d. |If statusis an abrupt completion, then
i. If pendingExcepon is undefined, then setpendingException
to status
8. If pendingExceptiois notundefined, then returrpendingException
9. Return the result of calling tHgPreventExtensiorjsinternal methodof O.

7.3.11 TestintegrityLevel (O, level)

oukrwnE

The abstract operation TestIntegrityLevels used to determine if the set of own properties of an object are fixed.
This abstract operation performs the following steps:

Assert: TypeQ) is Object.

Assert:levelis either"sealed " or "frozen ".

Let statusbetheresult of I€xtensiblgO).

ReturnIfAbruptétatus.

If statusis true, then returrfalse

NOTE If the object is extensible, none of its properties are examined.

Let keysbe the result of calling thfOwnPropertKeyd] internal method of.

ReturnlfAbruptkeys.

. Let pendingExceptiote undefined.

10. Let configurablebefalse.

11. Let writable befalse.

12. Repeaffor each elemenk of keys

a. Letstatusbe the result of calling the [[GetOwnProperty]] internal metho@®afith k.

b. If statusis an abrupt completion, then
i. If pendingExeptionis undefined, then setpendingExceptioto status
ii. Letconfigurablebetrue.

NGO ARWNE

© Ecma International 2009 i All rights reserved

53

secma

c. Else,
i. LetcurrentDescdbe status[[value]].
ii. If currentDesds notundefined, then
1. Setconfigurableto configurablelogically ored with
currentDesd[[Configurable]].
2. |If IsDataDescriptorturrentDesg is true, then
a. Setwritable to writable logically ored withcurrentDesc[[Writabl€d]].
13. If pendingExceptioms notundefined, then returrmpendingException
14. If levelis "frozen " andwritable is true, then returrfalse.
15. If configurableis true, then returrfalse.
16. Returntrue.

7.3.12 CreateArrayFromList (elements)

The abstract operation CreateArrayFromLists used to create an Array object whose elements are provided by
a List. This abstract operation performs the following steps:

Assert:elementss a List whose elements are all ECMAScript language values.
Let array bethe result of the abstract operation ArrayCreate with argument 0
Let n be 0.
For eachelemente of elements

a. Letstatusbe the result o€reateDataPropertg(ray, ToStringf), €).

b. Assert: statusis true.

c. Incrementn by 1.
5. Returnarray.

7.3.13 CreateListFromArrayLike (obj)

PN E

The abstract operation CreateListFromArrayLikes used to create a List value whose elements are provided by
the indexed properties of an array-like object. This abstract operation performs the following steps:

If Type(obj) is not Object, then throw @ypeError exception.
Letlenbe the result of Gévbj, "length").
Let n be ToLength(len).
ReturnifAbruptf).
Let list be an empty List.
Let indexbe 0.
Repeat whileindex< n
a. LetindexNameébe ToStringi{ndex).
b. Letnextbe the result of Gébbj, indexNamg
c. ReturnlfAbruptfex).
d. Appendnextas the last element &Gbt.
e. Setindextoindex+ 1.
8. Returnlist.

Nogs~wNhE

7.3.14 Ordinary Haslnstance (C, O)

The abstract operation OrdinaryHasInstanceémplements the default algorithm for determining if an object O
inherits from the instance object inheritance path provided by constructor C. This abstract operation performs
the following steps:

1. If IsCallable(C) is false, returnfalse.

2. If Chas a [[BoundTargetFunctionipternal slot then
a. LetBCbe the value o€ 6 [BBoundTargetFunction]|nternal slot
b. Return the result dinstanceofOperat¢®©,BC) (seel2.8.9.

3. If Type() is notObject, returnfalse.

4. Let P be the result of GEE, "prototype”).

54 © Ecma International 2013

~ecnd

5. ReturnlfAbrupt@).
6. If Type(P) is not Object, throw d&ypeError exception.
7. Repeat
a. SetOtotheresultof calling the [[GetPrototypedt internal methodof O with no arguments
b. ReturnlfAbruptQ).
c. If Oisnull |, returnfalse
d. If SameValueR, O) is true, returntrue.

7.3.15 GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)

The abstract operation GetPrototypeFromConstructdetermines the [[Prototype]] value that should be used to
create an object corresponding to a specific const |
prototype property, if it exists. Otherwise the supplied default is used for [[Prototype]]. This abstract
operation performs the following steps:

1. Assert: intrinsicDefaultProtoi s a string value that i s this speci
corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] valoigexta
If IsConstructor ¢onstructoj is false then throw aypeError exception.
Let proto be theresultof Ge{constructor "prototype”).
ReturnIfAbruptproto).
If Type(proto) is not Object then
a. If constructorhas a [[Realm]internal slotletrealmbec o n s t r[[Reatmf.r 6 s
b. Else,
i Let ctx be the running execution context.
ii. Letrealmbec t Réakn.
c. Letprotober e a lintridsie object namedahtrinsicDefaultProto
6. Returnproto.

arwn

NOTE If constructordoes not supply a [[Prototype]] value, the default value that is used is obtained from the Code
Realm of the constructorfunction rather than from the running execution context. This accounts for the possibility that a
built-in @ @create method from a different Code Realm might be installed on constructor

7.3.16 OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto, internalDataList)

The abstract operation OrdinaryCreateFromConstructoreates an ordinary object whose [[Prototype]] value is
retrieve d f r om a cpoototype r umperdyr ib ik exists. Otherwise the supplied default is used for
[[Prototype]]. The optional internalDatal.istis a List of the names of internal slot names that should be defined
as part of the object. If the list is not provided, an empty List is used. This abstract operation performs the
following steps:

1. Assert: intrinsicDefaultProtoi s a string value that i s this speci
corresponding object must be an intrinsic that is intériddse used as the [[Prototype]] value of an object.

2. Let proto be the result of GetPrototypeFromConstructonétructor intrinsicDefaultProtq.

3. ReturnlfAbruptproto).

4. Returnthe result of the abstract operation ObjectCipatto, internalDatalis).

7.4 Operations on Iterator Objects

See Commmon Iteration Interfaces(25.1).

7.4.1 Getlterator (obj)

The abstract operation Getlterator with argument obj performs the following steps:

Let iterator be the result of performing Invoke with argumenit§ @ @iterator and an empty List.
ReturnIfAbrupt(terator).

If Type(iterator) is notObject then throw &ypeError exception.
Returniterator.

PwONPE

© Ecma International 2009 i All rights reserved

55

secma

7.4.2 lteratorNext (iterator, value)

The abstract operation IteratorNext with argument iterator and optional argument value performs the following
steps:

If valuewas not passed, lealuebeundefined.

Let resultbe the result of Invok@&érator, " next ", (valug).
ReturnIfAbrupt¢esuly.

If Type(resul)) is not Object, then throwBypeError exception.
Returnresult

arwNpRE

7.4.3 lIteratorComplete (iterResult)
The abstract operation IteratorComplete with argument iterResultperforms the following steps:

1. Assert: TypeferResul) is Object.
2. Letdonebe he result of Get{erResult " done").
3. Return ToBooleartong.

7.4.4 lteratorValue (iterResult)
The abstract operation IteratorValue with argument iterResultperforms the following steps:

1. Assert: TypeferResul) is Object.
2. Return the result of GétérResult" value ").

7.4.5 IteratorStep (iterator, value)

The abstract operation IteratorStep with argument iterator and optional argument valuerequests the next value
from iterator and returns either false indicating that the iterator has reached its end or the IteratorResult object
if a next value is available. IteratorStep performs the following steps:

If valuewas not passed, lealuebeundefined.

Let resultbe the result oteratorNexiterator, value).
ReturnIfAbruptesuld.

Let donebe the result dteratorComplet@esulf).
ReturnifAbruptfione.

If doneis true, then returrfalse

Returnresult

Nouo,rwdrE

7.4.6 CreatelterResultObject (value, done)

The abstract operation CreatelterResultObject with arguments valueand donecreates an object that supports
the IteratorResult interface by performing the following steps:

Assert: Typedong is Boolean.

Let obj be the result of performing ObjectCrg@t®©bjectPrototype%).
Perform CreateDataProperty, " value ", value.

Perform CreateDataProperty|, " done", dong.

Returnobj.

aprONE

7.4.7 CreatelListlterator (list)

The abstract operation CreateListlterator with argument list creates an Iterator (25.1.2) object whose next
method returns the successive elements of list. It performs the following steps:

56 © Ecma International 2013

~ecnd

Let iterator bethe result of ObjectCreaf#ObjectPrototype% ([[Iterated.ist]], [[List IteratoMextindex]])).
Seti t e r d[lteratedList]] internal slot tdist.

Seti t e r {[ListlteratsrNextindej internal slot to O.

Define Listlteratomext (7.4.7.) as an own property oferator.

Returniterator.

oghrwdPE

7.4.7.1 Listlterator next()

The Listlterator next method is a standard built-in function object (clause 17) that performs the following
steps:

1. Let O be thethis value.
2. If O does not have a [[IteratedList]] internal slot, therothraTypeError exception
3. Letlist be theList that isvalue of the [[terated.ist] internal slot ofO.
4. Letindexbe the value of the [JstiteratorNextIindex]] internal slot d®.
5. LetlenValue be thenumber of elements difst.
6. If indexOlen, then
a. ReturnCreatelterResultObjeatfdefined, true).
7. Set the value of the [jstlteratorNextIndex]] internal slot oD to index+1.
8. Return CreatelterResultObjelist[indeX, false).

7.4.8 CreateEmptylterator ()

The abstract operation CreateEmptylterator with no arguments creates an Iterator object whose next method
always reports that the iterator is done. It performs the following steps:

1. Letemptybea List with no elements
2. Returnthe result of CreateListlteratarpty.

8 Executable Code and Execution Contexts
8.1 Lexical Environments

A Lexical Environment is a specification type used to define the association of Identifiersto specific variables
and functions based upon the lexical nesting structure of ECMAScript code. A Lexical Environment consists of
an Environment Record and a possibly null reference to an outer Lexical Environment. Usually a Lexical
Environment is associated with some specific syntactic structure of ECMAScript code such as a
FunctionDeclaration a BlockStatementor a Catchclause of a TryStatemant and a new Lexical Environment is
created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated
Lexical Environment.

The outer environment reference is used to model the logical nesting of Lexical Environment values. The
outer reference of a (inner) Lexical Environment is a reference to the Lexical Environment that logically
surrounds the inner Lexical Environment. An outer Lexical Environment may, of course, have its own outer
Lexical Environment. A Lexical Environment may serve as the outer environment for multiple inner Lexical
Environments. For example, if a FunctionDeclarationcontains two nested FunctionDeclarationghen the Lexical
Environments of each of the nested functions will have as their outer Lexical Environment the Lexical
Environment of the current evaluation of the surrounding function.

A global environment is a Lexical Environment which does not have an outer environment. The global
environment 6s outer emuli Aogmebtal rehereopomentsdbs envi
prepopulated with identifier bindings and includes an associated global object whose properties provide some

of the gl obal efienbindingsnTeing 6l dbdeelntabj ect i s t he thisal ue
binding. As ECMAScript code is executed, additional properties may be added to the global object and the

initial properties may be modified.

© Ecma International 2009 i All rights reserved

57

secma

A method environment is a Lexical Environment that corresponds to the invocation of an ECMAScript function
object that establishes a new this binding. A method environment also captures the state necessary to
support super method invocations.

Lexical Environments and Environment Record values are purely specification mechanisms and need not
correspond to any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript
program to directly access or manipulate such values.

8.1.1 Environment Records

There are two primary kinds of Environment Record values used in this specification: declarative environment
records and object environment records. Declarative environment records are used to define the effect of
ECMAScript language syntactic elements such as FunctionDeclarations VariableDeclarations and Catch
clauses that directly associate identifier bindings with ECMAScript language values. Object environment
records are used to define the effect of ECMAScript elements such as WithStatementhat associate identifier
bindings with the properties of some object. Global Environment Records and Function Environment Records
are specializations that are used for specifically for Script global declarations and for top-level declarations
within functions.

For specification purposes Environment Record values can be thought of as existing in a simple object-
oriented hierarchy where Environment Record is an abstract class with three concrete subclasses, declarative
environment record, object environment record, and global environment record. Function environment records
are a subclass of declarative environment record. The abstract class includes the abstract specification
methods defined in Table 16. These abstract methods have distinct concrete algorithms for each of the
concrete subclasses.

58 © Ecma International 2013

~ecnd

Table 16 8 Abstract Methods of Environment Records

Method Purpose

HasBinding(N) Determine if an environment record has a binding for an
identifier. Return true if it does and false if it does not. The
String value N is the text of the identifier.

CreateMutableBinding(N, D) Create a new but uninitialised mutable binding in an
environment record. The String value N is the text of the bound
name. If the optional Boolean argument D is true the binding is
may be subsequently deleted.

CreatelmmutableBinding(N) Create a new but uninitialised immutable binding in an
environment record. The String value N is the text of the bound
name.

InitialiseBinding(N,V) Set the value of an already existing but uninitialised binding in

an environment record. The String value N is the text of the
bound name. V is the value for the binding and is a value of any
ECMAScript language type.

SetMutableBinding(N,V, S) Set the value of an already existing mutable binding in an
environment record. The String value N is the text of the bound
name. V is the value for the binding and may be a value of any
ECMAScript language type. Sis a Boolean flag. If Sis true and
the binding cannot be set throw a TypeError exception. Sis
used to identify strict mode references.

GetBindingValue(N,S) Returns the value of an already existing binding from an
environment record. The String value N is the text of the bound
name. Sis used to identify strict mode references. If Sis true
and the binding does not exist or is uninitialised throw a
ReferenceEr ror exception.

DeleteBinding(N) Delete a binding from an environment record. The String value
N is the text of the bound name If a binding for N exists, remove
the binding and return true. If the binding exists but cannot be
removed return false. If the binding does not exist return true.

HasThisBinding() Determine if an environment record establishes a this binding.
Return true if it does and false if it does not.

HasSuperBinding() Determine if an environment record establishes a super
method binding. Return true if it does and false if it does not.

WithBaseObiject () If this environment record is associated with a with statement,

return the with object. Otherwise, return undefined.

8.1.1.1 Declarative Environment Records

Each declarative environment record is associated with an ECMAScript program scope containing variable,
constant, let, class, module, import, and/or function declarations. A declarative environment record binds the
set of identifiers defined by the declarations contained within its scope.

The behaviour of the concrete specification methods for Declarative Environment Records is defined by the
following algorithms.

8.1.1.1.1 HasBinding(N)

The concrete environment record method HasBinding for declarative environment records simply determines
if the argument identifier is one of the identifiers bound by the record:

1. LetenvRede the declarative environment record for which the method was invoked.
2. If envRedhas a binding for the name that is the valu&pfeturntrue.

© Ecma International 2009 i All rights reserved

59

secma

3. Returnfalse
8.1.1.1.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for declarative environment records creates
a new mutable binding for the name N that is uninitialised. A binding must not already exist in this
Environment Record for N. If Boolean argument D is provided and has the value true the new binding is
marked as being subject to deletion.

1. LetenvRedoe the declarative environment record for which the method was invoked.

2. Assert:envRedoes not already have a binding fér

3. Create a mutable binding envRedor N and record that it is uninitialised. ¥ is true record that the newly
created binding may be deleted by a subsequent DeleteBinding call.

4. Return NormalCompletiomMmpty).

8.1.1.1.3 CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding for declarative environment records
creates a new immutable binding for the name N that is uninitialised. A binding must not already exist in this
environment record for N.

1. LetenvRede the declarative endnment record for which the method was invoked.
2. Assert:envRedoes not already have a binding fér
3. Create an immutable binding anvRedor N and record that it is uninitialised.

8.1.1.1.4 InitialiseBinding (N,V)

The concrete Environment Record method InitialiseBinding for declarative environment records is used to set
the bound value of the current binding of the identifier whose name is the value of the argument N to the value
of argument V. An uninitialised binding for N must already exist.

1. LetenvRedoe thedeclarative environment record for which the method was invoked.
2. Assert:envReanust have an uninitialised binding fbi.

3. Set the bound value fdy in envRedo V.

4. Record that the binding fd¥ in envRedas been initialised.

8.1.1.1.5 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for declarative environment records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N to
the value of argument V. A binding for N must already exist. If the binding is an immutable binding, a
TypeError is thrown if Sis true.

Let envRedoe the declarative environment record for which the method was invoked.
Assert:envReanust have a binding faX.

If the binding forN in envRedasnot yet been initiaed throw aReferenceError exception.

Else f the binding forN in envReds a mutable binding, change its bound valu&'to

Else this must be an attempt to change the value of an immutable bindin§isdrifie throw aTypeError
exception.

6. Return NormalCompletiorfnpty).

orodE

8.1.1.1.6 GetBindingValue(N,S)
The concrete Environment Record method GetBindingValue for declarative environment records simply

returns the value of its bound identifier whose name is the value of the argument N. The binding must already
exist. If Sis true and the binding is an uninitialised immutable binding throw a ReferenceError exception.

60 © Ecma International 2013

~ecnd

Let envRedoe the declarative environment record for which the method was invoked.
Assert:envRedas a binding folN.
If the binding forN in envReds an uninitialised binding, then

a. If Sisfalse, return the valueindefined, otherwise throw &eferenceError exception.
4. Else,
a. Return the value currently bound kbin envRec

wneE

8.1.1.1.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for declarative environment records can only delete
bindings that have been explicitly designated as being subject to deletion.

1. LetenvRedoe the declarative environment record for which the method was invoked.
2. If envRedoes not have hinding for the name that is the valueMfreturntrue.

3. Ifthe binding forN in envReaannot be deleted, retufalse.

4. Remove the binding foN from envRec

5. Returntrue.

8.

1.1.1.8 HasThisBinding ()
Regular Declarative Environment Records do not provide a this binding.

1. Returnfalse
8.1.1.1.9 HasSuperBinding ()

Regular Declarative Environment Records do not provide a super binding.

1. Returnfalse
8.1.1.1.10 WithBaseObject ()

Declarative Environment Records always return undefined as their WithBaseObject.
1. Returnundefined.
8.1.1.2 Object Environment Records

Each object environment record is associated with an object called its binding object. An object environment
record binds the set of string identifier names that directly correspond to the property names of its binding
object. Property keys that are not strings in the form of an IdentifierNameare not included in the set of bound
identifiers. Both own and inherited properties are included in the set regardless of the setting of their
[[Enumerable]] attribute. Because properties can be dynamically added and deleted from objects, the set of
identifiers bound by an object environment record may potentially change as a side-effect of any operation
that adds or deletes properties. Any bindings that are created as a result of such a side-effect are considered
to be a mutable binding even if the Writable attribute of the corresponding property has the value false.
Immutable bindings do not exist for object environment records.

Object environment records also have a possibly empty List of strings called unscopabls. The strings in this
List are excluded from the environment records set of bound names, regardless of whether or not they exist
as property keys of its binding object.

Object environment records created for with statements (13.10) can provide their binding object as an
implicit this value for use in function calls. The capability is controlled by a withEnvironmenBoolean value that
is associated with each object environment record. By default, the value of withEnvironments false for any
object environment record.

The behaviour of the concrete specification methods for Object Environment Records is defined by the
following algorithms.

© Ecma International 2009 i All rights reserved

61

